

1001 Army Drive, Suite 103 Barrigada, Guam 96913 Telephone: 671-646-5231 Fax: 671-646-5230 www.eaest.com

31 March 2017

Ms. Rachel Roque Director, Real Estate Division Commonwealth of the Northern Mariana Islands Department of Public Lands 2nd Floor, Joeten Dandan Commercial Building Saipan, MP 96950

RE: Final – Phase II Environmental Site Assessment Report for the Masalog Ammunition Depot, Pina, Tinian, CNMI Contract No. 600431-OC (DPL-15-003); USEPA Grant ID No. BF-00T27401-0

Dear Ms. Roque,

Enclosed is an electronic copy of the Final Phase II Environmental Site Assessment Report for the Masalog Ammunition Depot, Pina, Tinian, CNMI. Please provide your review of the document within the next business 30 days. If you have any questions or comments, please contact me at your convenience at 671-646-5231 x505. EA appreciates this opportunity to provide these Phase II ESA services to the CNMI DPL.

Sincerely,

Robert Shambach, P.G. Project Manager

cc: Tim Lang, TRL Project file:

Attachments

This page intentionally left blank

FINAL

PHASE II ENVIRONMENTAL SITE ASSESSMENT Masalog Ammunition Depot Pina, Tinian

31 March 2017

Prepared for:

Commonwealth of the Northern Mariana Islands Department of Public Lands 2nd Floor, Joeten Dandan Commercial Building Saipan, MP 96950

Prepared by:

EA Engineering, Science, Technology, Inc., PBC 1001 Army Drive, Suite 103 Barrigada, Guam 96913-1402 (671) 646-5231 This page intentionally left blank

FINAL

PHASE II ENVIRONMENTAL SITE ASSESSMENT Masalog Ammunition Depot Pina, Tinian

Prepared for:

Commonwealth of the Northern Mariana Islands Department of Public Lands 2nd Floor, Joeten Dandan Commercial Building Saipan, MP 96950

Prepared by:

EA Engineering, Science, Technology, Inc., PBC 1001 Army Drive, Suite 103 Barrigada, Guam 96913-1402 (671) 646-5231

Robert Shambach, P.G. Project Manager

31 March 2017

This page intentionally left blank

TABLE OF CONTENTS

List of	Figures	5	iii	
List of	Tables		iii	
List of	Append	dices	iii	
Distrib	oution L	ist	iv	
Acrony	yms and	l Abbrev	viations vi	
Execut	tive Sun	nmary		
1	INTRO	DUCT	ION AND PURPOSE 1-1	
	1.1	PURPO	DSE1-1	
	1.2	scope of	of work1-1	
	1.3	REPO	RT ORGANIZATION1-2	
2	BACKGROUND			
	2.1	Site De	escription	
	2.2	Operat	ional History	
	2.3	Previo	as Investigations/Regulatory Involvement	
	2.4	Scopin	g Meeting	
	2.5	ENVIF	CONMENTAL SETTING	
	2.6	Impact on Human Health and/or the Environment		
	2.7	LAND USE		
	2.8	EXPO	SURE PATHWAYS	
3	FIELD	ACTIV	/ITIES	
	3.1	Permitting		
	3.2	Mobilization and Site Preparation		
	3.3	Vegetation Clearance and Grid Network Establishment		
	3.4	Surface Clearance of Munitions and Explosives of Concern		
	3.5	UXO Anomaly Avoidance During Soil Sampling		
	3.6	Soil Sa	mpling	
		3.6.1	Definition of Decision Units	
		3.6.2	Multi-Increment Sampling Approach	
		3.6.3	Sample Labeling, Preservation, and Chain of Custody	
		3.6.4	Soil Sample Identification	
		3.6.5	Soil Sample Collection Observations	

	3.7	Decontamination Procedures			
	3.8	Investigation Derived Waste			
	3.9	Deviations From The Work Plan			
4	ANAI	ANALYTICAL RESULTS			
	4.1	Laboratories and Analytical Methods			
	4.2	Applicable Action Levels4-			
		4.2.1 Tropical Pacific Tier 1 Environmental Screening Levels			
		4.2.2 EPA Regional Screening Levels			
	4.3	Laboratory Subsampling			
	4.4	Soil Sample Analytical Results			
		4.4.1 Polycyclic Aromatic Hydrocarbons			
		4.4.2 Explosive Residues			
		4.4.3 White Phosphorus			
		4.4.4 Total Metals			
5	DATA	DATA QUALITY ASSESSMENT			
	5.1	Field Quality Assurance/Quality Control			
	5.2	Laboratory Quality Assurance/Quality Control			
	5.3	Data Verification, Validation, and Assessment			
	5.4	DATA QUALITY INDICATORS			
	5.5	5 OVERALL DATA ASSESSMENT			
6	SUM	UMMARY OF RESULTS, CONCLUSIONS, AND RECOMMENDATIONS 6-9			
7	REFE	REFERENCES			

FIGURES

Figure 1	Vicinity Map
Figure 2	General Location
Figure 3	Site Grid and Transect Lines
Figure 4	Grid Identification
Figure 5	Site Features
Figure 6	Increment Collection Locations within Decision Units

TABLES

Table 1	Analytical Results for Soil Samples
Table 2	Analytical Results for Primary, Duplicate, and Triplicate Soil Samples
Table 3	Relative Standard Deviation and 95 Percent Upper Confidence Limit Calculations
	for Replicate Samples
Table 4	General Data Qualifying Conventions

APPENDICES

Appendix A	Permits	
Appendix B	Photographs	
Appendix C	Daily Reports and Field Logbook	
Appendix D	After Action Report, Munitions of Explosive Concern Anomaly Avoidance and	
	Surface Clearance	
Appendix E	Analytical Reports and Chain-of-Custody Records	

Appendix F Data Validation Report

DISTRIBUTION LIST

Rachel Roque Director, Real Estate Division Commonwealth of the Northern Mariana Islands Department of Public Lands 2nd Floor, Joeten Dandan Commercial Building Saipan, MP 96950

Tim Lang TRL Consulting 2nd Floor, Liberty Bldg. Beach Rd., Garapan Saipan, MP 96950

Robert Shambach, P.G. Project Manager EA Engineering, Science, and Technology, Inc., PBC 1001 Army Drive, Suite 103 Barrigada, Guam 96913-1402

Noemi Emeric-Ford, EPA Project Officer Lead Brownfields Coordinator US EPA Region 9 75 Hawthorne Street San Francisco, CA 94105

Eugenia E. McNaughton, Ph.D., EPA QA Manager Quality Assurance Office US EPA Region 9 75 Hawthorne Street San Francisco, CA 94105

ACRONYMS AND ABBREVIATIONS

AMPRO	All Hazardous Management Professionals
APP	Accident Prevention Plan
BECQ bgs	Bureau of Environmental and Coastal Quality below ground surface
cm	centimeter(s)
CNMI	Commonwealth of the Northern Mariana Islands
COPC	chemical of potential concern
CSM	conceptual site model
DEQ	Division of Environmental Quality
DoD	Department of Defense
DPL	Department of Public Lands
DU	decision unit
EA	EA Engineering, Science, and Technology, Inc., PBC
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
ESL	Environmental Screening Level
Eurofins	Eurofins Lancaster Laboratory
GPS	global positioning system
ID	identification
LCS	laboratory control sample
LOD	limit of detection
LOQ	limit of quantitation
MEC	munitions and explosives of concern
mg/kg	milligram(s) per kilogram
MI	multi-increment
MS	matrix spike
MSD	matrix spike duplicate
РАН	polycyclic aromatic hydrocarbon
QA	quality assurance
QC	quality control

ACRONYMS AND ABBREVIATIONS (Continued)

RPD RSD RSL RTI	relative percent difference relative standard deviation Regional Screening Level RTI Laboratory
SAP	Sampling and Analysis Plan
SSL	soil screening level
SSHP	Site Safety and Health Plan
SUXOS	Senior Unexploded Ordnance Supervisor
UCL	upper confidence limit
UXO	unexploded ordnance
UXOTII	UXO Technician II
UXOQCS/SO	Unexploded Ordnance Quality Control Specialist/Safety Officer

WP	Work Plan
WWII	World War II

EXECUTIVE SUMMARY

The Department of Public Lands, Commonwealth of the Northern Marianas Islands (CNMI) retained EA Engineering, Science, and Technology, Inc., PBC (EA) to conduct a Phase II Environmental Site Assessment (ESA) in a portion of the former Masalog Ammunition Depot Site, Pina, Tinian, CNMI. The Phase II ESA was performed within an approximately 12-hectare (30-acre) portion of the Masalog Ammunition Depot, identified as the Pina Tinian Lot 271 T61 Site, and hereafter referred to as the site.

The purpose of the Phase II ESA was to assess the nature and extent of potential munitionsrelated contamination in the surface and near-surface soil at the site; and the results are documented in this report. A secondary purpose of the Phase II ESA was to perform a surface assessment of unexploded ordnance (UXO) and munitions of explosive concern (MEC) within the site boundaries and to a depth of 30 centimeters (cm) from the surface; and the results are documented separately in an appendix to this report.

To perform the field investigation, EA mobilized personnel and equipment to the site during two phases of fieldwork, which included: (1) vegetation removal along transect lines and establishment of the grid network and (2) UXO/MEC surface assessment and soil sampling. The establishment of a grid network and transits, allowed full coverage of the site. This was accomplished with the support of an Unexploded Ordnance (UXO) Technician II that provided UXO anomaly avoidance support prior to vegetation removal and prior to placing grid network corner stakes in the ground. The UXO/MEC surface assessment and soil sampling were performed concurrently. During subsurface soil sampling activities, two UXO Technicians provided UXO anomaly avoidance support.

The assessment included the collection of multi-increment¹ (MI) soil samples from five decision units (DUs) defined at the site and laboratory analysis of soil samples. The MI soil samples consisted of 30 increments that were collected from between the ground surface and 1 foot below ground surface within each DU. The soil samples were submitted to offsite analytical laboratories under standard chain-of-custody procedures and were analyzed for explosives, polycyclic aromatic hydrocarbons (PAHs), metals, and white phosphorus.

The results of soil samples were compared to screening levels, which include the 2016 Tropical Pacific Environmental Screening Levels (ESLs) including background concentrations for metals and the 2016 U.S. Environmental Protection Agency (EPA) Regional Screening Levels (RSLs) and risk-based Soil Screening Levels (SSLs). The following parameters were detected at concentrations exceeding screening and background levels in soil samples collected during the Phase II ESA.

¹ Multi-increment is a registered trademark of EnviroStat, Inc.

- The PAH constituent naphthalene was detected in the five MI soil samples at concentrations ranging from 0.0021 to 0.0049 milligrams per kilogram (mg/kg) which exceeded the EPA risk-based soil screening level (SSL) of 0.00054 mg/kg.
- Silver was detected in the five MI soil samples at concentrations ranging from 0.108 to 3.46 mg/kg; the highest concentration of silver exceeded both the background concentration (1.5 mg/kg) and the EPA risk-based SSL (0.80 mg/kg).

As shown above, naphthalene and silver were detected in one or more samples at concentrations that exceeded their respective EPA risk-based SSLs and background concentration for silver. The EPA risk-based SSLs are based on groundwater protection concerns and indicates there is a potential leaching concern for these two constituents.

None of the detected concentrations exceeded ESLs based on residential or commercial/industrial land use, and none of the detected concentrations exceeded EPA RSLs based on residential or industrial land use; which indicates the soils in their present condition do not pose a direct exposure human health concern.

Based on industry standards, it is estimated that removal of all MEC and other metallic debris to a depth of 18-inches from the surface at the 30-acre site could range from between \$1,040,000 to \$1,730,000.

1 INTRODUCTION AND PURPOSE

The Department of Public Lands (DPL), Commonwealth of the Northern Marianas Islands (CNMI) retained EA Engineering, Science, and Technology, Inc., PBC (EA) to conduct a Phase II Environmental Site Assessment (ESA) in a portion of the former Masalog Ammunition Depot Site, Pina, Tinian, CNMI. Tinian is part of the CNMI, located north of Guam, and south of Saipan. The site is classified as a brownfields site, with funding from the U.S. Environmental Protection Agency (EPA) under Site-Specific Hazardous Substance – Grant No. BF-00T27401-0.

Based on the recommendations from a Phase I ESA (EA 2016a), a Phase II ESA was performed within an approximately 12-hectare (30-acre) portion of the Masalog Ammunition Depot, identified as the Pina Tinian Lot 271 T61 Site, and hereafter referred to as the site. Figure 1, Vicinity Map, shows the location of the site on the island of Tinian. Figure 2, General Location, shows the general location of the site. The site consists of a rectangular parcel of land at the former Masalog Ammunition Depot, within the Masalog Ridge Area, approximately 2.5 miles from San Jose village, the largest community on Tinian. Figure 3, Site Grid and Transect Lines, shows the overall site layout, transects, and grid system set up to perform the field assessment activities.

1.1 PURPOSE

The purpose of the Phase II ESA was to assess the nature and extent of potential munitionsrelated contamination in the surface and near-surface soil at the site; and the results are documented in this report. A secondary purpose of the Phase II ESA was to perform a surface assessment of unexploded ordnance (UXO) and munitions of explosive concern (MEC) within the site boundaries and to a depth of 30 centimeters (cm) from the surface; and the results are documented separately in an appendix to this report.

1.2 SCOPE OF WORK

The project scope of work consisted of the following tasks:

- Mobilized and performed site preparatory activities.
- Cleared vegetation, obstructions, and overburden necessary to access the ground to assess the UXO, with on-site vegetation management.
- Performed surface UXO/MEC assessment.

- Collected soil samples, including quality control (QC) samples, from the site to evaluate the nature and extent of potential contamination.
- Analyzed soil samples for the identified chemicals of potential concern, including polycyclic aromatic hydrocarbons (PAHs), explosives, metals, and white phosphorus.
- Disposed of investigation derived wastes.
- Surveyed sample locations and site features using geographic information system instrumentation.
- Performed data validation and assessment on the analytical data.
- Prepared this Phase II ESA report detailing field activities, deviations from the Final Sampling and Analysis Plan and Work Plan for Phase II Environmental Site Assessment, Masalog Ammunition Depot, Pina, Tinian (SAP/WP) dated April 2016 (EA 2016b), and recommendations for additional studies or remedial actions, along with associated costs. This Phase II ESA report includes Appendix D, After Action Report for MEC Anomaly Avoidance and Surface Clearance that details the results of the UXO surface assessment activities.

1.3 REPORT ORGANIZATION

This report documents the results of the Phase II ESA performed at the site. The UXO/MEC surface clearance results are presented separately in Appendix D. This report is organized in sections as follows:

- *Section 1, Introduction and Purpose* Describes the overall project and purpose of the site investigation activities.
- Section 2, Background Presents background information.
- *Section 3, Field Activities* Presents the site description and a description of field activities.
- *Section 4, Analytical Results* Presents laboratories used to analyze samples, analytical methods, applicable action levels, laboratory sample preparation, analytical results and comparison to screening levels.
- Section 5, Data Quality Presents a data quality assurance (QA)/QC discussion.

- Section 6, Summary of Results, Conclusions, and Recommendations Presents a summary of the Phase II ESA results, conclusions, and recommendations.
- Section 7, References Presents references cited in this report.
- *Appendix A, Permits* Provides copies of permits or consultations performed prior to implementing field activities.
- *Appendix B, Photographs* Provides representative photographs collected during field activities.
- *Appendix C, Daily Reports and Field Logbook* Provides daily reports and field logbook from EA Field Team Leader relating to the Phase II ESA.
- Appendix D, After Action Report, Munitions of Explosive Concern Anomaly Avoidance and Surface Clearance – Provides the information and discussion of MEC surface clearance activities performed concurrently with Phase II ESA activities. This report includes daily reports from the Senior Unexploded Ordnance Supervisor (SUXOS), and Unexploded Ordnance Quality Control Supervisor/Safety Officer (UXOQCS/SO).
- *Appendix E, Analytical Reports and Chain-of-Custody Records* Provides a copy of the complete laboratory analytical report including chain-of-custody records.
- Appendix F, Data Validation Report Provides a copy of the data validation report.

This page intentionally left blank

2 BACKGROUND

This section presents the site description, operational history, previous investigations and meetings, geological information, and potential impacts at the site.

2.1 SITE DESCRIPTION

The Masalog Ammunition Depot was a World War II (WWII) ordnance storage depot used during 1944 and 1945, intended primarily to service B-29 bombers during the aerial bombardment and planned invasion of Japan. The depot consists of open revetments and covers an elongated area of approximately 96 hectares (237 acres) along the eastern portion of Tinian.

The site is located within the former Masalog Ammunition Depot on Tinian, CNMI. The site is rectangular in shape, approximately 1,400 feet by 900 feet and occupies approximately 30 acres of undeveloped land (Figure 3).

The site is not occupied and is overgrown with scrub vegetation and tall grasses. The vegetation on the site is primarily by tangantangan (*Luceana leococephala*) forest. The tangantangan is characterized by stems that are approximately 10 to 20 feet in height with diameters at breast height ranging, on average, from 3 to 5 inches. The stems in general are 3 to 5 feet apart, though some areas are more open. The visibility through the tangantangan forest ranges from around 20 to 50 feet depending on the thickness of the tangantangan stands. Approximate 3- to 5-foot tall grass and thorny vegetation occurs along the road and in some open areas in the tangantangan. Typically, at least 6- to 8-inch high various herbaceous weeds cover the tangantangan forest floor.

Masalog Beach Road runs within the east and south eastern portion of the site. There are several regularly spaced WWII revetments along the road approximately 4 to 5 feet in height and 15 to 20 feet wide encompassing an area approximately 100 feet square. These revetments were used for the storage of aerial bombs and other ordnance for the US Army Air Corps operations associated with North Field and Tinian West Field bombardment squadrons during WWII (Allied Pacific Environmental Consulting 2014). There are no other structures present within the site.

2.2 OPERATIONAL HISTORY

During WWII, large quantities (estimated to be in the millions of pounds) of ammunition and ordnance were stored at the site by the United States of America in anticipated use during the attack and impending invasion of Mainland Japan. Following WWII, much of this ordnance was left in their storage locations on the islands of Saipan and Tinian. Several ordnance storage sites on Tinian and Saipan consisted of strategically positioned earthen revetments including the

Masalog Ammunition Depot which was designed to support of the B-29 bomber airfields on Tinian. The amount of ordnance stored on the site remains unknown. However, complete rounds, partially exploded munitions, and MEC from previous removal efforts (performed at the end of WWII), and burial pits containing discarded military munitions was suspected to be within the boundaries of the site.

The site was previously held by the Trust Territory of the Pacific from WWII until the creation of the CNMI government in 1976. The land was then transferred to the DPL under the CNMI Executive Branch. In 2013, the CNMI Bureau of Environmental & Coastal Quality (BECQ) Site Assessment and Remediation branch submitted and received approval from the EPA for the land to be classified as a Brownfields site (CNMI Division of Environmental Quality [DEQ] 2013).

2.3 PREVIOUS INVESTIGATIONS/REGULATORY INVOLVEMENT

The investigation site is located within the former Masalog Ammunition Depot on Tinian, CNMI. This particular site has not been widely investigated. A MEC survey for the general area was completed in 2008, and a site visit and reconnaissance was conducted in January 2016, as presented below. It is known that the site had ordnance stockpiles, but the nature and extent of the MEC is unknown. Further details on the previous investigations are presented below.

A UXO survey was conducted at the Masalog Ammunition Depot by All-Hazardous Management Professionals (AMPRO) Consultants in 2008 for the CNMI DPL. As a result of the survey a significant number of UXO and MEC components were located within the search area for the survey. Ordnance items included 500-pound incendiary bombs, 10-pound incendiary bomblets, fragmentation bombs, incendiary cluster adapters and components, and other miscellaneous ordnance components. There was evidence of detonation holes at and near revetment structures, likely due to WWII era "blown in place" disposal. The survey recommended a complete vegetation removal to assess the level of risk presented by the remaining MEC (AMPRO 2008). No environmental samples were collected.

A Phase I ESA for the entire Masalog Ammunition Depot was completed in July 2014 (Allied Pacific Environmental Consulting 2014) for the CNMI BECQ. Transect T-2 west was located within the subject site boundaries. A revetment berm, MK53 350 Pound Depth bomb, and a AN/M57 250 Pound General Purpose Bomb were identified on the subject site. In general, large quantities of MEC were found on adjacent sites. The Phase I ESA indicated that it was possible that chemical constituents from corroding UXO, such as Tritonal, trinitrotoluene, Composition B or Amatol, may have leached into the soils of the Ammunition Depot. No environmental samples were collected.

A Phase I ESA site reconnaissance of the site was conducted in January 2016 and a final report submitted in April 2016 (EA 2016a). The Phase I ESA included a database and records review;

personal interviews; a map, aerial photograph, and archival research; and a site reconnaissance and data collection. The following findings were noted during the 2016 Phase I ESA:

- There is a potential for explosive hazards to exist based on the significant number of MEC items identified.
- Over approximately 75 years, it is assumed that a percentage of the munitions will have deteriorated and may have resulted in the release of munitions constituents to the environment which could be a potential concern to human and ecological receptors.

The 2016 EA Phase I ESA recommended further investigation to assess the potential environmental risks and explosive hazards. The collection of soil samples has not been performed at the site during previous investigations.

2.4 SCOPING MEETING

On 15 December 2015, a project kickoff and scoping meeting was conducted between EA and DPL. The scope of work was discussed and refined according to the final proposal submitted by EA to the DPL.

A site visit was conducted on 4 to 5 January 2016 with representatives from EA and munitions support subcontractor Unitek Environmental Guam. A site brief and site walk was conducted on of portions of the site. Munitions debris was visible on the ground surface and other metals objects related to heavy equipment and vehicles were located throughout the site. No explosive hazards were seen, but incendiary bombs components were noted. Based on observations made during the site visit, there was concern that a "large amount" of material was buried beneath the ground surface, potentially including UXO. Unitek recommended on-site UXO technical support for future surveys and the performance of full MEC clearance for future intrusive work (Unitek 2016).

2.5 ENVIRONMENTAL SETTING

The site is located on the southeastern ridge of Tinian on the Pina Plateau. The soil class is Dandan-Chinen, shallow to moderately deep, well drained and nearly level with strongly sloping soils. This class is part of the common Mariana Limestone geologic unit. This unit include fine to coarse-grained fragmented limestone, and small amounts of clay. It is highly porous, and water flow easily through it (Gingerich 2002).

The site gently slopes to the southeast. Slopes increase (approximately 10 to 20 percent) to the southeast of the road. There are hummocky areas associated with past disturbance in several areas across the site. Several mounds occur adjacent to the road that are typically 8 to 10 feet

high, 15 to 20 feet across at the base, and 30 to greater than 60 feet long. The mounds along the road appear to be comprised of earthen material with a vegetative cover. There are some boulders and a few small boulder piles in areas adjacent to the road. The rocks and boulders in general are 1 to 3 feet in diameter.

The Commonwealth Utilities Corporation public system extracts water from one horizontal Maui-type well (Maui Well #2) located approximately 0.75 miles southwest of the site beneath the Makpo wetland (Figure 2). Before Maui Well #2 was put into service, the public system extracted water from the adjacent Maui Well #1. Maui Well #1 is currently out of service due to failed equipment and difficulty obtaining repair parts (Department of the Navy 2015).

Depth to groundwater in the vicinity of the site is approximately 200 feet below ground surface (bgs). Groundwater is the potable water supply source for residents in Tinian (United States Geological Survey 2000).

There are no surface water features on or near the site.

2.6 IMPACT ON HUMAN HEALTH AND/OR THE ENVIRONMENT

It is anticipated that over the past 75 years, a large percentage of the munitions deteriorating on the surface or shallow subsurface at the site may have resulted in a release of munitions constituents into the environment in soils as chemicals of potential concern (COPCs) to human and ecological receptors. COPCs associated with the historical use of the site as a munitions depot in shallow surface soil include MEC related constituents, including PAHs, explosive residue, metals, and white phosphorus.

2.7 LAND USE

The types of human receptors that may be present at the site now and in the future are site workers and occasional users/trespassers. Future planned land use is classified as either landfill or recreational.

2.8 EXPOSURE PATHWAYS

Possible exposure pathways are present through inhalation, ingestion, external and dermal contact of surface and shallow subsurface soil.

3 FIELD ACTIVITIES

The field activities documented in this section were performed in accordance with the Final SAP/WP (EA 2016b). The Final SAP/WP was reviewed and approved by DPL and EPA prior to performing field activities. Significant deviations from the Final SAP/WP and significant field observations related to implementing the field activities are presented and discussed in Section 3.9. Appendix B presents representative digital photographs of field activities.

3.1 PERMITTING

The following permits were obtained prior to mobilization to perform fieldwork:

• CNMI Commercial Earthmoving & Erosion Control Permit

No other permits were required for the Phase II ESA field effort.

3.2 MOBILIZATION AND SITE PREPARATION

Following approval of the Final SAP/WP and completion of permitting activities, personnel and equipment were mobilized to the site according to the phase of field work to be performed. Fieldwork was performed in two phases that included: (1) vegetation removal along transect lines and establishment of the grid network, and (2) MEC surface assessment and soil sampling. In general, mobilization activities included general preparatory activities, on-site project kickoff meetings, and safety briefings. Tailgate safety meetings were conducted in the field at the start of each work day.

The mobilization for the first phase of fieldwork occurred on 14 November 2016. Prior to arrival at the site, project personnel attended a briefing to review the Final SAP/WP, which included an Accident Prevention Plan (APP), and Site Safety and Health Plan (SSHP). An overview of planned vegetation clearance activities was reviewed, as well as a general site orientation and review of health and safety issues. Demobilization for the first phase of fieldwork occurred on 20 November 2016.

The mobilization for the second phase of fieldwork occurred on 05 December 2016. Prior to arrival at the site, project personnel attended a safety briefing to review the Final SAP/WP, APP, and SSHP (Appendix B, Photo 1). Personnel were familiarized with the site and attended a site safety brief conducted by the SUXOS and UXOQCS/SO. Personnel reviewed the applicable project documents, safety plans, and signed acknowledgement forms indicating they had received and reviewed pertinent forms and plans. Demobilization for the second phase of fieldwork occurred on 13 December 2016.

3.3 VEGETATION CLEARANCE AND GRID NETWORK ESTABLISHMENT

During the first mobilization, limited vegetation clearance was performed along transect lines to facilitate project activities and provide access to the site. The transect lines were spaced every 200 feet within the site (Figure 3). Based on the presence of UXO and MEC documented in previous investigations, a UXO Technician II (UXOTII) provided anomaly avoidance in advance of the vegetation clearance team, which consisted of four laborers. The UXOTII utilized a handheld Schonstedt (i.e., magnetometer) to assess the surface and near-surface soil (30 cm) for metallic anomalies. When an anomaly was identified, the UXOTII inspected the surface for the presence of MEC/UXO. If MEC/UXO was not observed on the ground surface, the vegetation clearance team was permitted to continue along the prescribed transect line.

No MEC items were identified during the UXO anomaly avoidance activities conducted during vegetation clearance and grid network establishment.

A grid network was established using a Trimble[®] GeoXHTM GPS Pathfinder handheld Global Positioning System (GPS) to provide positional control during the UXO surface clearance and soil sampling. The grid network was comprised of 126 individual grids that measured 100 feet by 100 feet (Figure 3). Along the cut transect lines, grid corners were cleared for surface MEC and subsurface UXO anomaly avoidance procedures were followed prior to marking each grid corner along each transect line with stakes marked with the designated grid alpha-numeric designator (A100, A200, ...).

As shown on Figure 4, each grid was assigned an alpha-numeric designator based on its location in the grid network, which was the method used to track and control fieldwork activities.

Following the establishment of transect lines and the grid network, a site inventory was performed to identify locations of revetments and former roadways. The results from the site inventory are presented on the site features Figure 5.

3.4 SURFACE CLEARANCE OF MUNITIONS AND EXPLOSIVES OF CONCERN

The purpose of the surface clearance was to identify and mark the locations of potential UXO/MEC on the surface and detectable anomalies within 30 cm bgs. No subsurface intrusive investigations were performed on any subsurface anomalies. Appendix C presents the daily reports and the field notebook related to the Phase II ESA activities prepared by the EA Team Leader. Appendix D presents the After Action Report that describes the approach and documents the results from the surface clearance at the site.

UXO surface clearance was performed using a 15-foot effective line spacing over the entire project site, covering a minimum of 33 percent of the total site area. Surface clearance was

performed prior to soil sampling using five- to six-person MEC Teams using handheld magnetometers. The MEC Team typically consisted of one SUXOS, one UXOQCS/SO, and three to four UXOTII or UXO Technician I (UXOTI).

During the surface clearance, the SUXOS followed behind the sweep lines, monitoring the UXO Technicians progress and direction, and ensuring the sweep lane was covered. In addition, the UXOQCS/SO followed behind the SUXOS while performing a quality assessment check of anomaly detection within sweep lanes.

The SUXOS and UXOQCS/SO were responsible for the final determination of a MEC item that was suspected to be live. Suspected live MEC items, or Materials Potentially Presenting an Explosive Hazard (MPPEH), were clearly marked with three red pin flags for final disposal procedures by Department of Public Safety (DPS) Explosive Response Team (XRT). Suspected live MEC items or MPPEH were logged, marked, and GPS coordinates were recorded.

MEC items determined to be live, or suspected to contain hazardous components, were marked for final disposal to be performed in the future by the DPS XRT. If the condition of an item could not be determined, it was considered live and marked for future DPS XRT disposal. The DPL PM was notified of all MEC discoveries. Small arms rounds (e.g., 5.56, 7.62, .45, .50 caliber) were not considered MEC, and were not observed at the project site during surface clearance operations.

MEC, MPPEH, and MD items were left in place and were not removed from the field. No offsite transportation of MEC or MD items for disposal was performed. The UXO team did not conduct disposal operations including handling or disposing of MEC, MPPEH, or MD identified at the site.

A total of 1,365 subsurface anomalies, surface anomalies, and MEC/ MPPEH were identified within the project site. Four pieces of MEC/MPPEH were identified within Grids A400, F400, G500, and L700. The locations of the items are shown on Appendix D, Figure 7.

3.5 UXO ANOMALY AVOIDANCE DURING SOIL SAMPLING

A UXO Team consisting of one UXOTII and one UXO Technician I, provided UXO anomaly avoidance support during the soil sampling field activities. At each soil sample collection location, the UXO technicians used a handheld magnetometer to ensure the area was free of any surface and subsurface anomalies within 3 feet of the sample location and to an approximate depth of 2 feet bgs. If the location was clear of anomalies, a soil sample was collected at a depth of 1 foot bgs. If the area was not clear of surface and subsurface anomalies, a nearby area free of surface and subsurface anomalies was utilized as the soil sample location. Subsurface anomalies

were detected at approximately 10 percent of the sample locations, and these locations were offset as described. The source of the subsurface anomalies were not investigated.

3.6 SOIL SAMPLING

This section presents the approach and implementation of the soil sampling field activities.

3.6.1 Definition of Decision Units

A decision unit (DU) is an area of the site about which a decision is to be made regarding the extent, magnitude, and the potential human health or environmental hazards posed by contaminants within the DU. The selection of DUs is unique to each site and depends, in part, on the specific environmental receptors and hazards under investigation. The appropriate type, size, shape, and number of DUs for a given project is necessarily site-specific and must take into consideration the historical, current, and future use of the site. Potential future use of this project site includes a landfill; however, future land use may include recreational or resort. Therefore, the investigation was performed in a manner that evaluates unrestricted (i.e., residential) land use.

For this project, five DUs were defined that provided coverage across the project site (Figure 6). DUs were defined as exposure areas for human and ecological receptors. To define each DU area, the project site was divided into five equal areas, each approximately 6 acres in area. The depth of each DU was 1 foot.

3.6.2 Multi-Increment Sampling Approach

Multi-increment (MI) soil samples were collected from each DU. MI soil samples are prepared by collecting a minimum number of small soil "increments" from a specified DU, and combining the increments into a single sample, referred to as the MI sample. The number of increments incorporated into field MI samples, and the overall mass of the MI samples collected is not dependent on the size of the DU.

For this project, each MI sample from each DU consisted of 30 increments. Within each DU, the location of each of the 30 increments was selected using a systematic random approach. Initially, a random starting location was selected and sampled. After the random starting location was sampled, the remaining increment locations were selected on a systematic basis, which consisted of pacing an equal distance around the DU with the goal of even distribution across the DU surface.

To collect an MI soil sample, after the UXO technicians performed anomaly avoidance, a hole was excavated to a depth of 1 foot bgs (with some exceptions; see next paragraph) using a

shovel. After the hole was dug, a new disposable stainless steel spoon was used to remove additional soil along one side of the hole, from the bottom to the top of the hole. This removed the soil that potentially contacted the shovel used to dig the hole. After the fresh soil was exposed along the whole sidewall, the spoon was used to collect a profile of soil from the bottom to the top of the hole. Approximately 2 ounces of soil was collected from each increment location, which was placed into a re-sealable bag. Following the collection of the last increment, the sample was processed, which included mixing within the sample collection bag, then collecting one 4-ounce aliquot in a glass jar (for white phosphorus analysis). The sample bag and sample jars were then sealed, labeled, and placed in a cooler with ice to begin the preservation process prior to shipment to the analytical laboratory. The disposable sampling spoon was then disposed of as investigation-derived waste.

During sample collection, the excavations for collection of individual increments were advanced to 1 foot bgs when possible. In the northwest portion of the site, which correlated to the highest elevations of the site, excavation beyond 6 inches bgs was not possible due to underlying coralline deposit; and increments were collected from the shallow locations when required. Less than 10 percent of the sample locations were collected from excavations that were approximately 6 inches to less than 1 foot bgs in depth.

Field replicates were collected from one DU during the MI sampling effort. The replicate samples included one duplicate and one triplicate that were collected in a manner identical to the primary sample collected within the DU. To collect the duplicate and triplicate samples, after the location of the primary sample was identified and swept for subsurface anomalies, a second and third location were identified within a 20-foot radius from the primary sample location; the distance from the primary location was chosen randomly. The direction away from the primary sample location for both the duplicate and triplicate were also chosen randomly and were determined by the UXO technicians during sample collection. The duplicate and triplicate samples were labeled in the same manner as the primary sample; however, a unique sample identification was used and the samples were submitted blind to the laboratory so they were not able to identify them as QC samples.

The handheld GPS was used to record the location of each of the individual increments within a DU. The GPS also recorded the increment locations for the duplicate and triplicate samples. The increment collections locations within each DU are presented in Figure 6.

3.6.3 Sample Labeling, Preservation, and Chain of Custody

Sample containers were labeled with unique sample identifications and the date and time of collection. They were then placed into a cooler containing ice to begin the preservation process prior to delivery to the analytical laboratory. Samples were transported to Saipan following

demobilization, where the sample coolers were repackaged with fresh ice and prepared for shipment via Federal Express to the analytical laboratory under standard chain-of-custody procedures. The chain-of-custody record included the project identification, project manager contact information, sample identification, and requested analysis. The chain-of-custody record was signed by the persons relinquishing and taking possession of the sample cooler.

3.6.4 Soil Sample Identification

Sample identifications for the MI soil samples were assigned according to the following general format: MAD-DU##.

Where MAD indicates Masalog Ammunition Depot and DU## designates the DU number (between 01 and 05).

Two replicate samples were collected from DU05, which were identified as MAD-DU06 (duplicate) and MAD-DU07 (triplicate).

3.6.5 Soil Sample Collection Observations

Generally, the soils at the site consisted of a thin layer of silty sand with abundant organic material underlain by hard coralline deposits. During sample collection, it was noted that the soil layer was thinner (approximately 6 inches thick) in the northwest portion of the site, which was the area highest in elevation (upslope). The soil layer thickened toward the southeast portion of the site, which was closer to the ocean.

3.7 DECONTAMINATION PROCEDURES

A shovel was used to excavate a hole at each increment location prior to using a disposable sampling spoon to collect each increment. Decontamination of the shovel was performed between each DU; the equipment did not require decontamination between each increment location within one DU.

Decontamination of the shovel consisted of manually removing clumps of soil from the surface of the shovel. Subsequently, the shovel was washed with a scrub brush in a non-phosphate detergent solution. After washing in the detergent solution, the shovel was rinsed twice using bottled drinking water, then allowed to air dry in a dust free location.

3.8 INVESTIGATION DERIVED WASTE

Investigation-derived waste generated during this project included used personal protective equipment and disposable sampling equipment. The used personal protective equipment and

disposable sampling equipment was double bagged and placed in municipal refuse dumpster. These wastes are not considered hazardous and were disposed of at the municipal landfill.

3.9 DEVIATIONS FROM THE WORK PLAN

The Final SAP/WP indicated that a systematic random sample collection scheme would be used to collect the MI sample. The approach indicated that each DU would be divided into five columns and six rows. The ends of each row and column would be marked with flags to help establish approximate lines for the collection of increments. Further, the Final SAP/WP indicated the 30 individual increment locations per DU would then be collected by placing 1 increment at the start of each row and additional increments placed at the intersection of the rows and columns.

During the implementation of field efforts, a systematic random sample collection scheme was used, but deviated from the approach described in the Final SAP/WP. During field activities, rows and columns were not established due to the dense vegetation and substantial labor effort required to mark five columns and six rows with flagging in each DU.

The modified approach to ensure a systematic random sample collection scheme was employed included using the 100-foot by 100-foot grid concept and the handheld GPS. In general, each DU consisted of 18 full 100-foot by 100-foot grids plus 9 partial grids. The GPS was used to navigate to a random area within each of the 27 full or partial grids and a random location was selected for the collection of a single increment; plus 3 totally random locations were selected; for a total of 30 increment locations per DU. This approach ensured that the increment locations were systematically randomly located, but also spread across the entire DU. Further, each increment location was recorded on the handheld GPS and the locations are shown on Figure 6.

As can be observed on Figure 6, some of the increment locations were on or just outside of individual DU boundaries. This was a result of the dense vegetation that was difficult to navigate while maintaining positional awareness. Also, some partial 100-foot by 100-foot grids were included in each DU, which also resulted in difficulty in maintaining positional awareness. Overall, the result of some increments being collected on or just outside of the individual DU boundaries is considered negligible. If the sampling effort were to be repeated, similar results are expected because similar positional awareness difficulties would be experienced during future efforts.

This page intentionally left blank

4 ANALYTICAL RESULTS

This section presents the analytical support information including the identity of the laboratories, analyses requested, screening levels, laboratory subsampling procedures, analytical results, and the comparison of analytical results to screening levels.

4.1 LABORATORIES AND ANALYTICAL METHODS

The samples collected at this site were analyzed by two laboratories: Eurofins Lancaster Laboratory (Eurofins) in Lancaster, Pennsylvania and RTI Laboratory (RTI) in Livonia, Michigan. The field samples were shipped to Eurofins and a separate aliquot of undisturbed sample for white phosphorus analysis only was forwarded to RTI by the sample receiving personnel at Eurofins.

The MI soil samples were analyzed for the following:

- PAHs (SW8270C using selected ion monitoring)
- Metals (SW6010B/6020/7471A)
- Explosives (SW8330B)
- White phosphorus (SW7580).

Eurofins performed the analysis of PAHs, explosives, and metals and RTI performed the analysis of white phosphorus. Laboratory analytical reports and chain-of-custody records are presented in Appendix E.

4.2 APPLICABLE ACTION LEVELS

This report documents analytical results from soil samples, which were initially compared to (1) Tropical Pacific Tier 1 Environmental Screening Levels (ESLs) published in Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendix 1: Detailed Lookup Tables, Tropical Pacific Edition, Co-Sponsored by CNMI DEQ and Guam Environmental Protection Agency, Summer 2016 and updated in December 2016 (CNMI DEQ 2016; hereafter referred to as the "TP EHE Guidance"), and (2) EPA Regional Screening Levels (RSLs) (EPA 2016).

4.2.1 Tropical Pacific Tier 1 Environmental Screening Levels

The term "Tier 1 ESL" is used to identify the lowest of the individual ESLs relevant to the media (i.e., soil, soil gas, or groundwater). The Tier 1 ESLs were updated between the Final SAP/WP

and the preparation of this report, and the updated Tier 1 ESLs are reflected herein. For soil, the Tier 1 ESLs are selected as the lowest of the individual ESLs for the following:

- Direct/indirect exposure with impacted soil (includes ingestion, dermal absorption, inhalation of vapors and dust in outdoor air)
- Protection of groundwater quality (leaching of chemicals from soil)
- Protection against gross contamination concerns (free product, odors, etc.) and general resource degradation.

Tier 1 ESLs are concentrations of contaminants in soil, soil gas, and groundwater above which the contaminants could pose a potential adverse threat to human health and the environment. Exceeding the Tier 1 ESL does not necessarily indicate that contamination at the site poses environmental hazards. However, it does indicate that additional evaluation is warranted, which may include additional site investigation and a more detailed evaluation of the specific, tentatively identified hazards. The ESLs can be used to delineate specific areas of the site that require remedial actions. These actions can vary, depending on the hazard present and site conditions.

The ESLs allow the option to select "commercial/industrial land use only" over unrestricted (or "residential") land use. However, the TP EHE Guidance advises the following (CNMI DEQ 2016):

"As the category heading implies, use of the soil ESLs listed under "Commercial/Industrial Use Only" places implicit land-use restrictions on the affected property. The short-term cost savings of limiting site cleanup to meet only commercial/industrial-use ESLs rather than unrestricted land use should be carefully weighted against potential restrictions on future property use. In addition to land use restrictions, cleanup to commercial/industrial-use ESLs may also encumber the site with long-term environmental monitoring requirements and requirements for future subsurface excavation activities."

Therefore, the analytical results were compared to both unrestricted and commercial/industrial land use Tier 1 ESLs.

The Tier 1 ESL lookup tables are organized to reflect three of the most important factors that control the magnitude of environmental hazards posed by contaminated soil and groundwater (CNMI DEQ 2016):

- Accessibility of the impacted soil (e.g., currently or potentially exposed at the ground surface versus isolated in the subsurface).
- Beneficial use of the groundwater immediately underlying the site or otherwise potentially threatened by the release (e.g., drinking water resource threatened versus no drinking water resource threatened).
- Current and anticipated future use of the site (e.g., residential land use permitted or commercial/industrial land use only).

Conceptual Site Model

These factors are incorporated into a total of eight conceptual site models (CSMs) that describe default site conditions used to develop the Tier 1 ESLs. The CSM and associated Tier 1 ESLs that most directly applies to the site under investigation are selected to screen for potential environmental hazards. Therefore, the CSM for this site includes (1) shallow soil less than 3 meters in depth, and (2) the site lies in area of potential drinking water source or were a drinking water resource is threatened (CNMI DEQ 2016; Table A-1 for Unrestricted Land Use, Table A-2 for Commercial/Industrial Land Use).

Background Metals

Background metals concentrations tend to be higher in soils developed over volcanic rocks and can exceed risk-based screening levels in some cases. This is especially true for arsenic, but can also occur for heavy metals such as antimony, cadmium, chromium (in comparison to screening levels for hexavalent chromium), thallium, and vanadium associated with soils developed over volcanic bedrock. If a release of one of these chemicals is suspected at a site then additional evaluation may be warranted (e.g., testing of soil specifically for hexavalent chromium) and more stringent, risk-based screening levels. Therefore, analytical results for metals were additionally compared to natural background concentrations (CNMI DEQ 2016; Table M).

Limits of Quantitation

The laboratory sets method limits of quantitation (LOQs) based on the method or instrument detection limits established for the analytical methods. The LOQs are also dependent on (1) sample matrix, (2) COPCs in the analytical sample (i.e., high concentrations of COPCs may require dilution for accurate quantification), and (3) field chemical preservation (i.e., methanol preservation).

Some analytes had LOQs that were equal to or greater than their respective Tier 1 ESL. This is a commonly recognized condition, and is addressed in Section 2.7 of the Tropical Pacific Edition

of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 1: User's Guide (CNMI DEQ 2016):

"In cases where an ESL for a specific chemical is less than the standard method detection limit for a commercial laboratory (as agreed upon by the overseeing regulatory agency), it is generally acceptable to consider the method detection limit in place of the action level."

Note that the above guidance used "method detection limit" which is analogous to LOQ.

The following explosives residue analytes were not detected at concentrations exceeding their respective laboratory LOQs, but the LOQs exceeded their respective Tier 1 ESLs:

- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- Nitrobenzene
- 2-Nitrotoluene
- 3-Nitrotoluene
- Nitroglycerin
- RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine).

4.2.2 EPA Regional Screening Levels

The EPA publishes RSLs that were developed using risk assessment guidance from the EPA Superfund program. The RSLs are risk-based concentrations derived from standardized equations combining exposure information assumptions with EPA toxicity data. RSLs are considered by the EPA to be protective for humans (including sensitive groups) over a lifetime; however, RSLs are not always applicable to a particular site and do not address non-human health endpoints, such as ecological impacts. The RSLs contained in the RSL table are generic; they are calculated without site-specific information. They may be re-calculated using site-specific data.

Similar to the Tier 1 ESLs, the RSLs are published for both residential and commercial/industrial land use scenarios, as well as risk-based soil screening levels (SSLs) based on the protection of groundwater. The RSLs are calculated based on a target cancer risk of 1.0×10^{-6} and a target hazard quotient of 1.0. The most current version of the RSLs can be accessed the following website:

https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016

4.3 LABORATORY SUBSAMPLING

The MI samples were submitted to the laboratories for processing prior to analysis. The MI samples were air dried then sieved to less than 2-millimeter particle size. Sub-sampling was accomplished with a sectorial splitter (also called a rotary riffle splitter), or a representative subsample was hand collected by taking approximately 30 small increments from systematic random locations from the dried and sieved sample spread out in a thin layer. Sub-sampling was used to provide a representative laboratory subsample (and any laboratory replicates) for a single MI sample, and to provide representative sub-samples for multiple analyses. The mass of sample needed for the subject analytical test or tests was used to determine the parameters for splitting the sample with the sectorial splitter, or in selecting the mass of each increment if hand collecting the sub-sample. It is critical that the entire mass of dried and sieved sample is used in the sub-sampling process.

4.4 SOIL SAMPLE ANALYTICAL RESULTS

During the site investigation activities documented in this report, a total of seven MI soil samples were collected from five DUs. The seven MI soil samples consisted of five primary samples collected from DUs 1 through 5, one duplicate sample collected from DU 5, and one triplicate sample collected from DU 5. The analytical results for the five primary samples are discussed below and the analytical results for the two replicate samples are discussed in Section 5.2. The MI soil samples were analyzed for the constituents listed in Section 4.1 and were compared to applicable action levels listed in Section 4.2. The analytical results and comparison to the applicable action levels is presented in Table 1.

4.4.1 Polycyclic Aromatic Hydrocarbons

The PAH list analyzed by the laboratory includes 18 separate analytes, as listed in Table 1.

Naphthalene was detected in the five primary and two replicate MI soil samples at concentrations ranging from 0.0056 to 0.0049 milligrams per kilogram (mg/kg). The seven detected concentrations exceed the EPA risk-based SSL of 0.00054 mg/kg. The seven detected concentrations were below the unrestricted and commercial/industrial Tier 1 ESL (3.1 mg/kg), the EPA residential RSL (3.8 mg/kg), and the EPA industrial RSL (17 mg/kg).

The following five PAH analytes were detected at concentrations exceeding their respective LOQs in one or more MI soil samples; however, the detected concentrations were significantly below their respective Tier 1 ESLs and EPA RSLs:

- Acenaphthylene
- Anthracene

- Benzo(b)fluoranthene
- Chrysene
- 2-Methylnaphthalene.

The remaining 12 PAH analytes were not detected at concentrations above their respective laboratory LOQs in the five MI soil samples.

4.4.2 Explosive Residues

The explosive residues list analyzed by the laboratory includes 19 analytes, as listed on Table 1. None of the 19 explosive residues analytes were detected at concentrations above their respective laboratory LOQs in the five MI soil samples.

4.4.3 White Phosphorus

White phosphorus was not detected at a concentration above the laboratory LOQ in the five soil samples (Table 1).

4.4.4 Total Metals

The metals analyzed for this project includes 13 separate metals, as presented in Table 1.

Silver was detected in five primary and two replicate MI soil samples at concentrations ranging from 0.108 to 3.46 mg/kg. The highest concentration, 3.46 mg/kg detected in sample MAD-DU02, exceeds the background concentration of 1.5 mg/kg and the EPA risk-based SSL of 0.80 mg/kg. However, the highest detected concentration was below the unrestricted Tier 1 ESL (78 mg/kg), the commercial/industrial Tier 1 ESL (1,200 mg/kg), the EPA residential RSL (390 mg/kg), and the EPA industrial RSL (5,800 mg/kg). The concentrations of silver detected in the remaining four MI soil samples were below the ESLs and RSLs.

The remaining 12 metals (antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, and zinc) were detected at concentrations below their respective background concentrations.

5 DATA QUALITY ASSESSMENT

A QA/QC program was implemented during the field investigation to ensure the generation of data of adequate and defensible quality. The specifications for the QA/QC program were outlined in the SAP/WP (EA 2016b). The QA/QC program was designed to minimize error, provide early identification and correction of potential problems, control the data acquisition process, and evaluate the performance of the sampling program. The QA/QC procedures were followed in the field as well as at the offsite laboratories. A general discussion and specific results of the QA/QC program as well as an evaluation of data generated from environmental samples and a summary of potential impacts on data quality are presented in the sections below.

5.1 FIELD QUALITY ASSURANCE/QUALITY CONTROL

Field QC samples were collected in the field and submitted to the offsite laboratory following the requirements of the SAP/WP (EA 2016b). Field QC samples included one set of replicate samples and the purpose, preparation, and frequency of these samples are summarized below.

Replicate samples consisting of a duplicate and a triplicate were collected at a minimum 10 percent frequency of the total number of MI samples collected from the five DUs. Field QC samples are listed in Table 2. For this project, replicate samples included sample identification (ID) MAD-DU06 (duplicate) and sample ID MAD-DU07 (triplicate) associated with primary sample ID MAD-DU05 collected within DU05. The sample identifications for the duplicate and triplicate samples were selected to submit the samples "blind" to the laboratory. Replicate MI soil samples were collected using the same methodology as the primary soil sample, as discussed in Section 3.6.2. Analytical results for original and replicate soil samples are presented in Table 2.

Standard Deviation and Relative Standard Deviation

The standard deviation is a statistical measure of the scatter, or variability, of several sample values around their average. The lower the standard deviation, the lower the variability of the sample values observed in the data.

The relative standard deviation (RSD), expressed as a percent, is a measure of precision between several sample values (the primary, duplicate, and triplicate samples). The RSD differs from the relative percent difference (RPD) in that it measures the precision between several sample values versus just two sample values. The RSD is calculated as the standard deviation divided by the mean (average). The RSD is useful for comparing the uncertainty between different measurements. As presented in the SAP/WP, the RSD goal for this investigation is 30 percent or less. Tables 2 and 3 present the RSDs calculated for chemical constituents with detected concentrations above the LOQ for the primary, duplicate, and triplicate MI samples.

Overall, the RSDs, shown on Table 2, for MI soil sample results are acceptable (less than or equal to 30 percent) with one exception; the calculated RSD for acenaphthylene was 32 percent, which is above the goal of 30 percent.

95 Percent Upper Confidence Limit

The 95 percent upper confidence limit (UCL) is a statistical measure of the precision for a series of measurements. In this case, the primary, duplicate and triplicate samples were be used to calculate a mean (or average) value and a standard deviation. The mean and standard deviation were used to calculate, with 95 percent confidence, the mean value for each contaminant detected. The 95 percent UCL calculations for the MI soil samples with detections in the primary, duplicate, and triplicate samples are shown on Table 3. Note that the calculation of the 95 percent UCL was performed when the normal, duplicate, and triplicate samples had positive detections of an individual analyte. If one of the three samples contained non-detectable or estimated concentrations (i.e., J flag data qualifier), the 95 percent UCL was not calculated. The 95 percent UCL for the MI soil samples are shown on Table 3.

5.2 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

The chemical analyses were performed in accordance with the SAP/WP (EA 2016b) by the selected offsite laboratories: Eurofins Lancaster Laboratory in Lancaster, Pennsylvania and RTI Laboratories in Livonia, Michigan. The complete analytical reports and chain-of-custody records are included in Appendix E. The laboratories followed the QA/QC procedures outlined in the EPA publication entitled "Test Methods for Evaluating Solid Waste, SW-846" (EPA 1996).

Matrix spike (MS) and matrix spike duplicate (MSD) sample pairs were prepared by the analytical laboratories at a minimum frequency of five percent. If necessary, additional sample volume was provided for the preparation of MS pairs as per laboratory specifications. At the laboratories, known concentrations of target analytes were added to the sample material to prepare the MS/MSD samples. The MS/MSD samples were carried through the preparation and analytical procedures in the same manner as the associated field samples. The percent recoveries and RPDs of the spike analytes in the MS/MSD samples were used to evaluate the effect of the sample matrix on accuracy and precision.

Additional laboratory QC samples (i.e., method blanks, laboratory control and laboratory control duplicate samples, and laboratory duplicates as well as surrogates, internal standards, and serial dilutions, if applicable) were prepared as required by the analytical methods and analyzed as per the approved SAP/WP (EA 2016b). These samples were used to perform the internal laboratory QC as described within the SAP/WP (EA 2016b) and the Department of Defense (DoD) Quality System Manual (DoD 2017) prior to delivery of data for validation. The laboratory's evaluation

of the QC results includes comparison to the internal statistically-generated control charts as well as the project limits presented in the SAP/WP (EA 2016b) to allow detections of trends or bias in the generated results. The procedures used for the qualification of analytical data based on the laboratory QC are presented in Table 4.

5.3 DATA VERIFICATION, VALIDATION, AND ASSESSMENT

The purpose of data validation and data quality review is to eliminate suspect analytical data and to assign data qualifiers, as appropriate, for potential data quality issues identified. The analytical data collected during the field investigation were verified and validated prior to use in this report. The data validation report is included in Appendix F. Results of the data validation, in the form of data qualifiers, were incorporated into the data summary table (Table 1).

A usability assessment of data quality against the objectives set forth in the SAP/WP (EA 2016b) was also completed for the analytical results (Section 1.4). This assessment was performed to determine the data usability in terms of precision, accuracy, representativeness, sensitivity, comparability, and completeness. The usability assessment considers whether data meet project quality objectives as they relate to the decision(s) to be made, and evaluates whether data are suitable for making that decision.

The analytical data packages were validated by the EA Project Chemist in accordance with the National Functional Guidelines for Superfund Organic Methods Data Review (EPA 2016b) and the National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA 2016c) with respect to the QA/QC parameters and as specified in the project-specific planning documents.

The validation consisted of a review of the reported results, and an evaluation of the following, as appropriate for the analytical method (raw data were not reviewed):

- Data package completeness
- Sample management (including sample preservation, handling, transport, chain-ofcustody protocol, holding times, and condition at laboratory receipt)
- Initial and continuing calibrations
- Instrument tuning and performance
- Detection limits
- Blanks results

- Blank spikes (laboratory control samples [LCSs] and/or LCS duplicates recoveries and RPD(s)
- MS recoveries and RPD
- Reported detection limits
- Serial dilutions
- Surrogate and internal standard recoveries
- Field and laboratory duplicate RPD and RSD
- Post-digestion spike results
- Interference check sample results
- Manual integrations
- Target analyte list verification
- Data qualifiers.

Additionally, on a subset of the analytical results (minimum of 10 percent) the review includes the reported results and associated raw data. A complete review of the data reporting forms is performed to ensure compliance with project requirements and quality objectives. The raw data, including records of sample preparation, instrument conditioning, and calibrations and verifications, were reviewed against summarized forms for completeness and correctness. Chromatograms and ion spectra were reviewed to verify target compound identification. Calculation checks were performed to verify reported values in the summarized forms, including initial calibrations, calibration verifications, spike recovery, duplicate relative differences, and target analyte quantitation. The additional validation encompassed the elements presented above, as well as the following, when appropriate for the analytical method:

- Compound identification and quantification
- Transcription verification
- Review of calculations and raw data
- Verification of the electronic data report.

Data validation guidelines for qualifying sample results have been developed according to the method requirements, professional judgement, and general DoD requirements as shown in Table 4.

Qualitative rather than quantitative assessments of data quality were performed because the data validation guidelines produce qualitative results (U, UJ, J, and R flags rather than a numerical error or variability value associated with each data point) and because it is difficult to accurately quantify sources of error. Data qualified with the "R" flag are considered unusable. Data qualified with the "UJ" (nondetectable results) or "J" (detectable) flags are considered estimated concentrations. If data are qualified, one final qualifier was applied using the following order of precedence: R, J, UJ, and U. The data qualifiers used are defined in Table 1.

5.4 DATA QUALITY INDICATORS

This section outlines the qualitative and quantitative assessment of the analytical data quality. A quantitative assessment of the analytical data was measured using the parameters of precision, accuracy, and completeness. The acceptance limits for each of these parameters are presented in the SAP/WP (EA 2016b). Qualitative assessment of the analytical data quality was measured by assessing the representativeness and comparability of the data. The sensitivity of the reported results was also evaluated. This section evaluates whether the quality and usability of the data collected during the Phase II ESA investigation achieved the objectives specified in the SAP/WP (EA 2016b).

Precision—defined as the degree of agreement among repeated measurement of the same parameter. Precision also characterizes the natural variation of the matrix. Precision was evaluated through the use of field replicate samples to assess the potential bias of field and laboratory conditions on the results, and also through the use of MS pairs or sample replicates to assess the laboratory's precision. The quantitative indicator of precision is the RPD or RSD between the results of the field replicates and the original sample, the laboratory MS/MSD pairs, or laboratory replicates and original sample.

The method and matrix precision were generally in control; specific exceptions are presented in the data validation report presented in Appendix F. The results qualified from out-of-control precision are qualified as estimated concentrations. The collected data show that the field activities adequately collected representative samples and that the laboratory evaluated the matrix consistently.

Accuracy—measures the closeness of an observed value to the "true" value. Accuracy is evaluated through the use of blank spike and MS sample recoveries, which are compared to control limits specified in the SAP/WP (EA 2016b).

Matrix and method accuracy results were generally in control; specific exceptions are presented in the data validation reports presented in Appendix E. The results qualified from out-of-control matrix accuracy are considered to be estimated concentrations. Overall, the laboratory and matrix accuracy are acceptable. **Representativeness**—expresses the degree to which sample data accurately and precisely represent the characteristics of the population that is sampled.

Sample data were representative of site conditions at the time of sample collection. The samples were properly stored and preserved and analyzed within holding times. No contaminants were detected in method blanks at concentrations greater than one-half the LOQ. During data verification and validation, the condition of samples at laboratory receipt and the associated documentation were evaluated. No significant issues were identified that could potentially affect the quality of the generated sample data. No results were qualified or rejected based upon this review.

Completeness—measure of the amount of usable data obtained versus the total possible planned data. The evaluation included an assessment of the number of valid results divided by the possible number of individual results, expressed in a percentage. The samples proposed in the project planning documents were collected and no data were qualified as unusable (R); therefore, the completeness for project data is 100 percent.

Comparability—qualitative indicator that expresses the confidence with which one data set can be compared to another. This goal is achieved by using Standard Operating Procedures to collect and analyze representative samples, and reporting data in standardized formats. The samples were reported in industry-standard units, as specified in the project planning documents. Results obtained are comparable to industry standards, as the collection and analytical techniques performed followed approved and documented procedures. The sampling and testing were conducted in accordance with the specifications of the SAP/WP (EA 2016b) and are, therefore, deemed to be comparable.

Sensitivity—ability of an analytical system (i.e., sample preparation and instrumental analysis) to detect a target component in a given sample matrix within a defined level of confidence. Factors affecting the sensitivity of an analytical system may include analytical system background (e.g., laboratory artifact or method blank contamination), sample matrix (e.g., mass spectrometry ion ratio change, co-elution of peaks, or baseline elevation), and instrument instability.

To evaluate if the analytical sensitivity achieved the project goals, sample-specific limits of detection (LODs) were compared against the goals set forth in the project planning documents. In addition, sample results were compared to detections of target analytes in method blanks to identify potential effects of laboratory background on sensitivity.

The LODs for a number of target compounds exceeded the project screening levels where the compounds were not detected at or above the LODs. The higher LODs for these compounds were primarily the results of limitations associated with the analytical methods. The uncertainty

associated with these compounds was recognized in the project planning documents. The LODs that did not meet the project screening levels in one or more samples are listed in Section 4.2.1.

5.5 OVERALL DATA ASSESSMENT

The data reported were found to meet the objectives specified in the WP/SAP (EA 2016b) and are considered accurate and usable as qualified for the intended purpose and to be representative of site conditions at the time of collection, based on the data evaluation presented in the section above.

6 SUMMARY OF RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this project was to assess the nature and extent of potential munitions-related contamination in the surface and near-surface soil at the site. The assessment included the collection of MI soil samples from five DUs defined at the site and laboratory analysis of soil samples. The MI soil samples consisted of 30 increments that were collected from between the ground surface and 1 foot bgs within each DU.

Naphthalene was detected in the five primary and two replicate MI soil samples at concentrations ranging from 0.0021 to 0.0056 mg/kg, which exceeded only the EPA risk-based SSL of 0.00054 mg/kg (which represents leaching/groundwater protection concerns).

Silver was detected in five primary and two replicate ISM soil samples at concentrations ranging from 0.108 to 4.48 mg/kg. The highest concentration, 3.46 mg/kg detected in sample MAD-DU02, exceeds the background concentration of 1.5 mg/kg and the EPA risk-based SSL of 0.80 mg/kg. The concentrations of silver detected in the remaining four MI soil samples were below the ESLs and RSLs.

As shown above, naphthalene and silver were detected in one or more samples at concentrations that exceeded their respective EPA risk-based SSLs as well as the background concentration for silver. The EPA risk-based SSLs are based on groundwater protection concerns and indicates there is a leaching concern for these four constituents.

None of the detected concentrations exceeded ESLs based on residential or commercial/ industrial land use, and none of the detected concentrations exceeded EPA RSLs based on residential or industrial land use; which indicates the soils in their present condition do not pose a direct exposure human health concern.

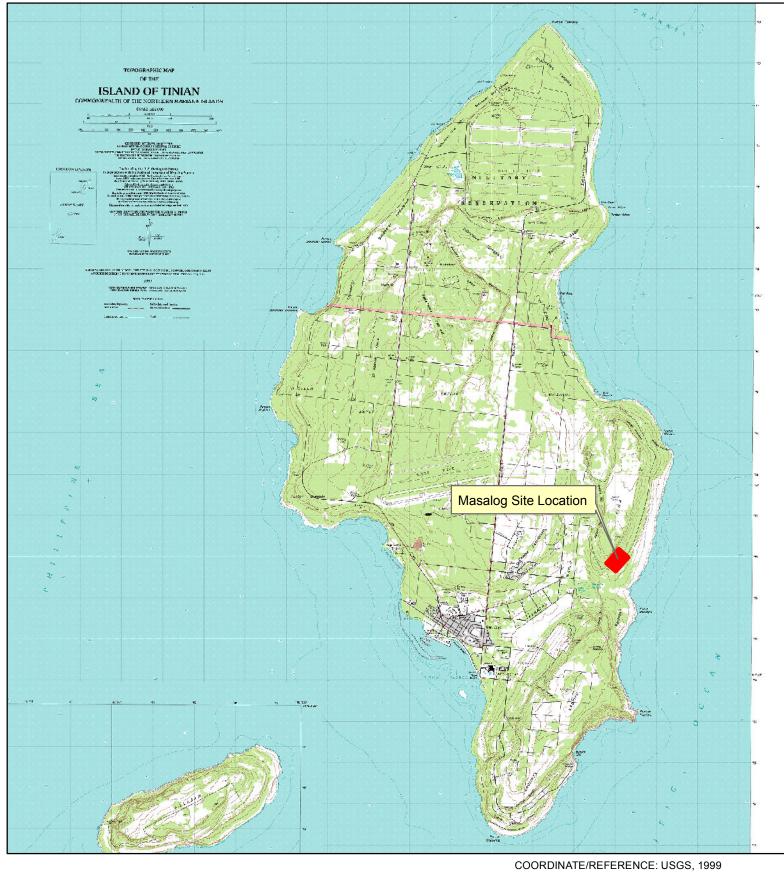
Based on the results of the Phase II ESA no further action or investigation for soil contaminates is recommended at this time. Four locations with MEC or MPPEH remain at the site, therefore there exists a potential for explosive hazards during any ground disturbance activities. More than 1,200 subsurface magnetic anomalies were identified within the site boundaries based on 33 percent screening of the site.

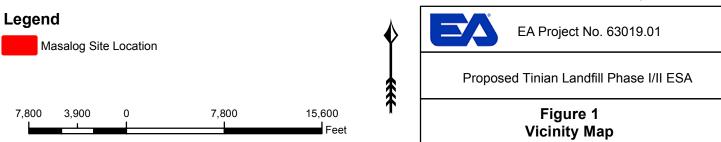
If site should be developed in the future, a full cleanup of MEC and MPPEH metallic debris should be performed at the site. Removal of vegetation and metallic debris on the surface to 18 inches below ground surface is assumed following industry standards for sites with MEC. An effective and efficient method of removing vegetation at the 30-acre site is the use of mechanical equipment supplemented by hand-held tools. Most of the vegetation could be removed mechanically using skid-steer track loaders with forestry mulchers and rotary brush-cutting attachments. The attachments should be configured such that vegetation will not be removed

closer than six inches from the ground surface. Where mechanical equipment access is difficult, vegetation may need to be hand-cut, using man-portable brush cutting equipment (e.g., chain saws, trimmers with steel brush-cutting blades). This method of vegetation mulching would alleviate the need to dispose of the green waste off site. This retards initial re-growth of undesirable vegetation, prevents erosion, and replenishes the topsoil. Unlike other land and lot clearing methods, forestry mulching leaves no brush piles to burn, bury or haul off. UXO support personnel would be needed to provide UXO avoidance during vegetation clearing.

An estimate of removal alternatives is provided below.

	Estimated Cost	Estimated Cost
	(Low)	(High)
Vegetation Clearing (per acre)	\$3,000	\$6,000
Surface and Subsurface Metallic Debris	\$30,000	\$50,000
Removal (per acre)		
Environmental Permitting (per site)	\$50,000	\$50,000
Total Costs for 30 Acre Site	\$1,040,000	\$1,730,000


This estimated cost is to be used for planning purposes only and is based on Best Professional Judgment and experience gained from completed and ongoing similar projects on Guam, Saipan, and in the United States. All costs are based on Fiscal Year 2017 rates.


7 REFERENCES

- All Hazardous Management Professionals Ordnance and Explosive (AMPRO) Consultants. 2008. Unexploded Ordnance Survey, Proposed Tinian Landfill Site, Tinian, CNMI.
- Allied Pacific Environmental Consulting. 2014. Phase I Environmental Site Assessment CNMI BECQ Tinian Masalog Site. Prepared by Allied Pacific Environmental Consulting for CNMI Bureau of Environmental and Coastal Quality. July.
- Commonwealth of the Northern Mariana Islands, Division of Environmental Quality (CNMI DEQ). 2013. CNMI Department of Environmental Quality Public Record. Masalog Ridge Area Site, Tinian. <u>http://cnmideqpublicrecord.weebly.com/masalog-ridge-area-site-tinian.html</u>. Accessed February 2016.
- _____. 2016. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Appendix 1. (revised Summer 2016).
- Department of Defense (DoD). 2017. Quality Systems Manual for Environmental Laboratories, Version 5.1, January.
- Department of the Navy. 2015. Draft Environmental Impact Statement/Overseas Environmental Impact Statement for Commonwealth of the Northern Mariana Islands Joint Military Training. April.
- EA Engineering, Science, and Technology, Inc., PBC (EA). 2016a. Phase I Environmental Site Assessment, Masalog Ammunition Depot, Pina, Tinian, CNMI. April.
- _____. 2016b. Final Sampling and Analysis Plan and Work Plan for Phase II Environmental Site Assessment, Masalog Ammunition Depot, Pina, Tinian. April.
- Gingerich, S.B. 2002. Geohydrology and Numerical Simulation of Alternative Pumping Distributions and the Effects of Drought on the Ground-Water Flow System of Tinian, Commonwealth of the Northern Mariana Islands (No. 02-4077) (p. 46). Honolulu, HI.
- U.S. Environmental Protection Agency (EPA). 2016a. Region 9 Regional Screening Levels Tables. Superfund Division. EPA Region 9. San Francisco, California. May.
 - _____. 2016b. National Functional Guidelines for Superfund Inorganic Methods Data Review, 540-R-2016-001. September
 - _____. 2016c. National Functional Guidelines for Superfund Organic Methods Data Review, 540-R-2016-002. September

- _____. 1996. SW-846 On-Line. Available online: http://www.epa.gov/epaoswer/hazwaste/test/main.htm. 1996.
- Unitek Environmental Guam. 2016. Field Operations Report, Munitions and Explosives of Concern Anomaly Investigation Support, Masalog Ammunition Depot. January.
- United States Geologic Society. 2000. Ground-water resources of Tinian, Commonwealth of the Northern Mariana Islands.

FIGURES

Legend

 \rightarrow

- Site Boundary
 - General Direction of Groundwater Flow

Ť Ν

1

, and the GIS apping, Aer Tom, Mapn

COORDINATE/REFERENCE: WGS_1984_UTM_Zone_55N

Tinian Landfill Phase I / II Environmental Site Assessment

Figure 2 General Location

Date: 03/04/16 Drawn By: JSoriano EA Project No. 63019.

不


Ν

	The Wardson Contraction of the
	A RELATION OF THE REAL PROPERTY OF
00	
00	
	· · · · · · · · · · · · · · · · · · ·
	Lefters and the second second
	And the second se
	A CONTRACTOR OF THE OWNER OWNE
	And the second
and the second second	COORDINATE/REFERENCE: WGS_1984_UTM_Zone_55N
	Tinian Landfill Phase I / II
nd Technology, Inc., PBC	Environmental Site Assessment
1 Army Drive, Suite 103, Barrigada, 96913-1402	Figure 3
elephone: (671) 646-5231	Site Grid and
acsimile: (671) 646-5230	Transect Lines

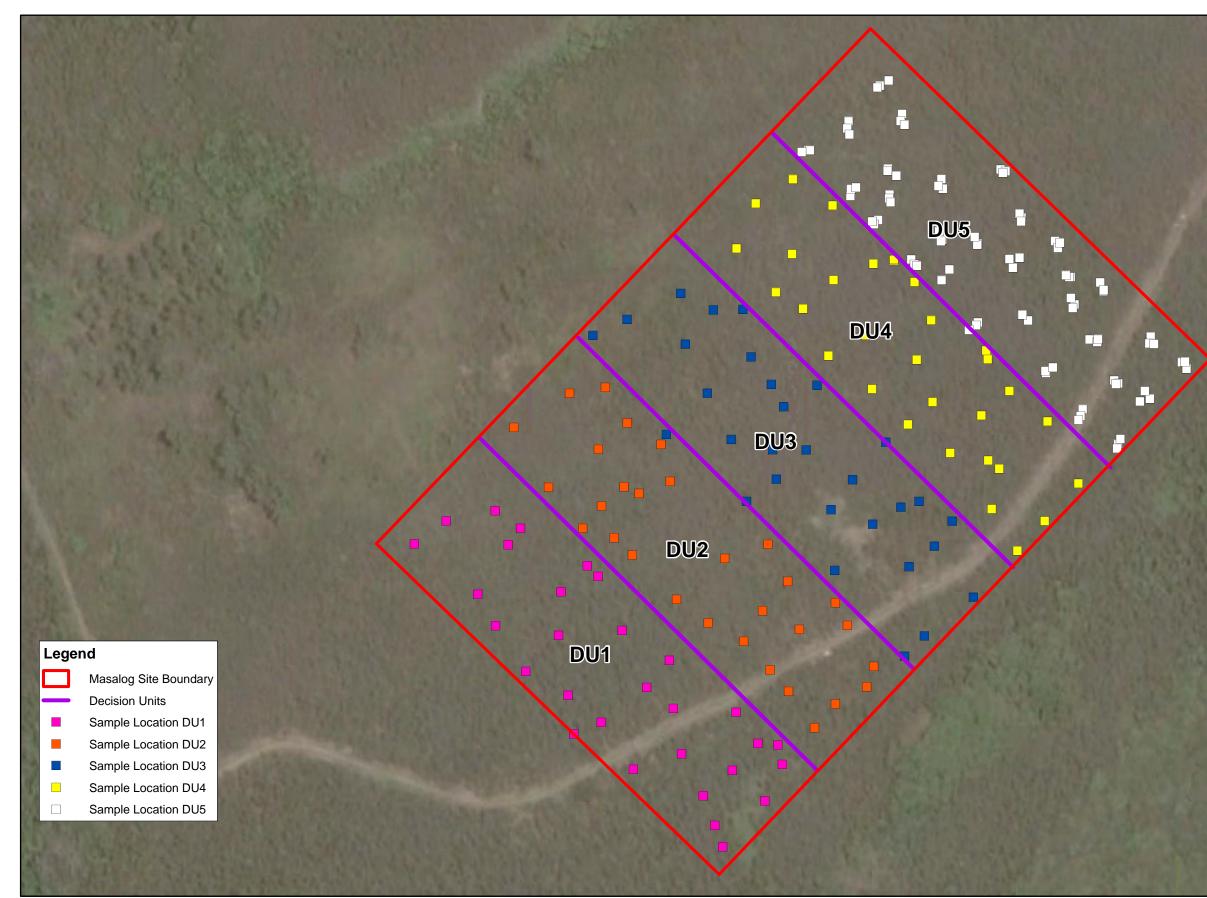
_			
Date	: 01/27/17	Drawn By: RKinchla	EA Project No. 63019

Ν

			A. Long				
		COORD	VINATE/REFERENCE: WG	S_1984_UTM_Z	one_55N		
nd Technology, Inc., PBC 1 Army Drive, Suite 103, Barrigada, 96913-1402 lephone: (671) 646-5231 acsimile: (671) 646-5230	Tinian Landfill Phase I / II Environmental Site Assessment						
	6913-1402 646-5231		Figure Grid Identifi				
	Data: 01/	07/2017	Drawn Dyn Dl/in abla		00040		

chnology, Inc., PBC ny Drive, Suite 103,	Environmental Site Assessment
rigada, 96913-1402 one: (671) 646-5231 nile: (671) 646-5230	Figure 4

	Date: 01/27/2017	Drawn By: RKinchla	EA Project No. 63019
--	------------------	--------------------	----------------------



Ν

	COORDINATE/REFERENCE: WGS_1984_UTM_Zone_55N
nd Technology, Inc., PBC 1 Army Drive, Suite 103,	Tinian Landfill Phase I / II Environmental Site Assessment
Army Drive, Suite 103, Barrigada, 96913-1402 Jephone: (671) 646-5231 acsimile: (671) 646-5230	Figure 5 Site Features

	COORDINATE/REFERENCE: WGS_1984_UTM_Zone_55N
d Technology, Inc., PBC	Tinian Landfill Phase I / II Environmental Site Assessment
Army Drive, Suite 103, Barrigada, 96913-1402 phone: (671) 646-5231 csimile: (671) 646-5230	Figure 5 Site Features

Date: 01/27/2017 Drawn By: RKinchla EA Project No. 63019

EA Engineering, Science, and T 1001 Ar Telep Facs within Decision Units Drawn By: RKinchla EA Project No. 63019 Date: 01/27/17

Ť

Ν

	COORDINATE/REFERENCE: WGS_1984_UTM_Zone_55N
Technology, Inc., PBC	Tinian Landfill Phase I / II Environmental Site Assessment
Sarrigada, 96913-1402 Shone: (671) 646-5231 simile: (671) 646-5230	Increment Collection Locations

TABLES

Table 1 - Analytical Results for Soil Samples

Phase II Environmental Site Assessment

Masalog Ammunition Depot

Analyte Polycyclic Aromatic Hydrocarbons Acenaphthene SV Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(g,h,i)perylene SV	Analytical Method	CASRN 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2	Units mg/kg mg/kg mg/kg mg/kg	Unrestricted 120 5.5	TPESLs ¹ Commercial/Ind ustrial 120 5.5	Background	c/nc		-	Risk-based	DU01 11-Dec-2016 Results		DU02 Dec-2016 sults Q			DU04 12-Dec-2016	DU05 12-Dec-2016
Analyte Polycyclic Aromatic Hydrocarbons Acenaphthene SV Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(g,h,i)perylene SV	Method W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM	83-32-9 208-96-8 120-12-7 56-55-3 205-99-2	mg/kg mg/kg mg/kg	120 5.5	Commercial/Ind ustrial	5	c/nc	EPA Regiona	Date of Sam	ple Collection evels ² Risk-based		<u>6 11-D</u>	Dec-2016			12-Dec-2016	12-Dec-2016
Analyte Polycyclic Aromatic Hydrocarbons Acenaphthene SV Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(g,h,i)perylene SV	Method W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM	83-32-9 208-96-8 120-12-7 56-55-3 205-99-2	mg/kg mg/kg mg/kg	120 5.5	Commercial/Ind ustrial	5	c/nc	-	-	Risk-based							
Analyte Polycyclic Aromatic Hydrocarbons Acenaphthene SV Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(g,h,i)perylene SV	Method W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM	83-32-9 208-96-8 120-12-7 56-55-3 205-99-2	mg/kg mg/kg mg/kg	120 5.5	Commercial/Ind ustrial	5	c/nc	-	-	Risk-based	Rosults) Res	ults 0	Desults			
Acenaphthene SV Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM	208-96-8 120-12-7 56-55-3 205-99-2	mg/kg mg/kg	120 5.5	120	5	C/IIC	Residential	industrial	661	Rosulte) Rec		Deculte			
Acenaphthene SV Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM	208-96-8 120-12-7 56-55-3 205-99-2	mg/kg mg/kg	5.5		NS				SSL	Nesuits	~ 1.03		Results	Q	Results Q	Results Q
Acenaphthylene SV Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM W8270C SIM W8270C SIM W8270C SIM W8270C SIM	208-96-8 120-12-7 56-55-3 205-99-2	mg/kg mg/kg	5.5		NS			17.000								
Anthracene SV Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM W8270C SIM W8270C SIM W8270C SIM	120-12-7 56-55-3 205-99-2	mg/kg				nc	3,600	45,000	5.5	0.00084		.00085 U	0.00083	U	0.00093 U	0.00095 U
Benzo(a)anthracene SV Benzo(b)fluoranthene SV Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM W8270C SIM W8270C SIM	56-55-3 205-99-2				NS	-	NS	NS	NS			0.0032	0.0021	J	0.0041	0.0071 J
Benzo(b)fluoranthene SV Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM	205-99-2	ma/ka	4.2	4.2	NS	nc	18,000	230,000	58	0.0023		.00042 U	0.00041	U	0.00047 U	0.00047 U
Benzo(k)fluoranthene SV Benzo(g,h,i)perylene SV	W8270C SIM			10	10	NS	С	0.16	2.9	0.0042	0.00084		.00085 U	0.00083	U	0.00093 U	0.00095 U
Benzo(g,h,i)perylene SV			mg/kg	5.4	5.4	NS	С	0.16	2.9	0.041			0.0034	0.0036		0.0024	0.0045
	SW8270C SIM	207-08-9	mg/kg	29	29	NS	С	1.6	29	0.40	0.00084	-	.00085 U	0.0010	J	0.00093 U	0.00095 U
Benzo(a)pyrene SV		191-24-2	mg/kg	35	35	NS	-	NS	NS	NS			.00085 U	0.00083	U	0.00093 U	0.00095 U
	W8270C SIM	50-32-8	mg/kg	1.6	2.9	NS	С	0.016	0.29	0.0040			.00085 U	0.00086	J	0.00093 U	0.00095 U
-	W8270C SIM	218-01-9	mg/kg	30	30	NS	С	16	290	1.2			0.0015 J	0.0016	J	0.0010 J	0.0027
	W8270C SIM	53-70-3	mg/kg	1.6	2.9	NS	С	0.016	0.29	0.013			.00085 U	0.00083	U	0.00093 U	0.00095 U
	W8270C SIM	206-44-0	mg/kg	87	87	NS	nc	2,400	30,000	89			0.0010 J	0.0012	J	0.00093 U	0.0023 J
	W8270C SIM	86-73-7	mg/kg	93	93	NS	nc	2,400	30,000	5.4			0.0012 J	0.0013	J	0.0016 J	0.0015 J
	W8270C SIM	193-39-5	mg/kg	9.6	9.6	NS	С	0.16	2.9	0.13			.00085 U	0.00083	U	0.00093 U	0.00095 U
	W8270C SIM	90-12-0	mg/kg	0.89	0.89	NS	С	18	73	0.0060	0.00084	U 0.0	.00085 U	0.00083	U	0.0016 J	0.0016 J
	W8270C SIM	91-57-6	mg/kg	1.9	1.9	NS	nc	240	3,000	0.19	0.0014	J 0.0	.00085 U	0.0018	J	0.0031	0.0028
Naphthalene SV	W8270C SIM	91-20-3	mg/kg	3.1	3.1	NS	С	3.8	17	0.00054	0.0024	0	0.0021	0.0049		0.0030	0.0043
	W8270C SIM	85-01-8	mg/kg	69	69	NS	-	NS	NS	NS			0.0011 J	0.0013	J	0.00093 U	0.0016 J
Pyrene SV	W8270C SIM	129-00-0	mg/kg	44	44	NS	nc	1,800	23,000	13	0.00084	J 0.0	.00085 U	0.0010	J	0.00093 U	0.0021 J
Explosive Residues																	
2-Amino-4,6-dinitrotoluene	SW8330B	35572-78-2	mg/kg	1.8	1.8	NS	n	150	2,300	0.030	0.040 l	Ŋ	0.041 UJ			0.041 UJ	0.041 UJ
4-Amino-2,6-dinitrotoluene	SW8330B	19406-51-0	mg/kg	0.52	0.52	NS	n	150	2,300	0.030	0.040 l	Ŋ	0.041 UJ	0.040	UJ	0.041 UJ	0.041 UJ
2,4-Diamino-6-nitrotoluene	SW8330B	6629-29-4	mg/kg	NS	NS	NS	-	NS	NS	NS	0.097 l	JJ	0.10 UJ		UJ	0.10 UJ	0.10 UJ
2,6-Diamino-4-nitrotoluene	SW8330B	59229-75-3	mg/kg	NS	NS	NS	-	NS	NS	NS	0.097 l	JJ	0.10 UJ	0.098	UJ	0.10 UJ	0.10 UJ
3,5-Dinitroaniline	SW8330B	618-87-1	mg/kg	NS	NS	NS	-	NS	NS	NS	0.040 l	JJ	0.041 UJ	0.040	UJ	0.041 UJ	0.041 UJ
1,3-Dinitrobenzene	SW8330B	99-65-0	mg/kg	0.12	0.12	NS	nc	6.3	82	0.0018	0.039 l	JJ	0.040 UJ	0.039	UJ	0.040 UJ	0.040 UJ
2,4-Dinitrotoluene	SW8330B	121-14-2	mg/kg	0.024	0.024	NS	С	1.7	7.4	0.00032	0.039 l	IJ	0.040 UJ	0.039	UJ	0.040 UJ	0.040 UJ
2,6-Dinitrotoluene	SW8330B	606-20-2	mg/kg	0.0051	0.0051	NS	С	0.36	1.5	0.000067	0.11 l	JJ	0.11 UJ		UJ	0.11 UJ	0.11 UJ
HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)	SW8330B	2691-41-0	mg/kg	19	19	NS	nc	3,900	57,000	1.3	0.21 l	JJ	0.21 UJ	0.21	UJ	0.21 UJ	0.21 UJ
	SW8330B	98-95-3	mg/kg	0.0053	0.0053	NS	С	5.1	22	0.000092	0.097 l	JJ	0.10 UJ		UJ	0.10 UJ	0.10 UJ
Nitroglycerin	SW8330B	55-63-0	mg/kg	0.039	0.039	NS	n	6.3	82	0.00085		JJ	0.80 UJ		UJ	0.80 UJ	0.80 UJ
•••	SW8330B	88-72-2	mg/kg	0.0049	0.0049	NS	С	3.2	15	0.00030			0.075 UJ		UJ	0.075 UJ	0.075 UJ
	SW8330B	99-08-1	mg/kg	0.12	0.12	NS	nc	6.3	82	0.0016		JJ	0.11 UJ		UJ	0.11 UJ	0.11 UJ
	SW8330B	99-99-0	mg/kg	0.29	0.29	NS	c	34	140	0.0040		IJ	0.11 UJ		UJ	0.11 UJ	0.11 UJ
	SW8330B	78-11-5	mg/kg	2.1	2.1	NS	nc/c	130	570	0.028		J]	0.80 UJ		UJ	0.80 UJ	0.80 UJ
	SW8330B	121-82-4	mg/kg	0.010	0.010	NS	C	6.1	28	0.00027		J]	0.00 UJ		UJ	0.040 UJ	0.040 UJ
	SW8330B	479-45-8	mg/kg	31	31	NS	nc	160	2,300	0.00027		J]	0.10 UJ		UJ	0.040 UJ	0.040 UJ
	SW8330B	479-45-8 99-35-4		2.8	2.8	NS	nc	2.200	32.000	2.1			0.10 UJ		UJ	0.040 UJ	0.10 UJ
	SW8330B SW8330B	99-35-4 118-96-7	mg/kg mg/kg	1.2	1.2	NS	C NC	2,200	32,000 96	0.015		-	0.040 UJ		UJ	0.040 UJ	0.040 UJ

Table 1 - Analytical Results for Soil Samples

Phase II Environmental Site Assessment

Masalog Ammunition Depot

									Samp	mple Identifier le Description		D	-DU02 J02	MAD-DU0 DU03	DU04	MAD-DU05 DU05
										ple Collection	11-Dec-201	6 11-De	ec-2016	11-Dec-20 ⁻	16 12-Dec-2016	12-Dec-2016
Analyte	Analytical Method	CASRN	Units	Unrestricted	TPESLs ¹ Commercial/Ind ustrial	Background	c/nc	Residential	al Screening L Industrial	Risk-based SSL	Results	Q Resu	lts Q	Results	Q Results Q	Results Q
Other Explosives																
White phosphorus	SW7580	7723-14-0	mg/kg	NS	NS	NS	n	1.6	23	0.0015	0.0011	UJ 0.0	0010 UJ	0.00091	UJ 0.0010 UJ	0.0010 UJ
Total Metals																
Antimony	SW6020	7440-36-0	mg/kg	6.3	93	45	nc	31	470	0.35	0.341	0	.418	0.759	0.274	0.340
Arsenic	SW6020	7440-38-2	mg/kg	24	95	20	С	0.68	3.0	0.0015	10.4		9.47	14.2	10.4	8.80
Beryllium	SW6020	7440-41-7	mg/kg	31	150	3.0	n	160	2,300	19	1.07		1.00	0.950	1.08	0.833
Cadmium	SW6020	7440-43-9	mg/kg	7.4	65	15	nc	71	980	0.69	2.55		2.94	3.60	2.05	1.97
Chromium ³	SW6020	7440-47-3	mg/kg	1,100	1,100	1,000	С	0.30	6.3	0.00067	124		118	132	128	93.0
Copper	SW6020	7440-50-8	mg/kg	630	2,500	190	nc	3,100	47,000	28	105		106	124	108	94.0
Lead	SW6020	7439-92-1	mg/kg	400	800	50	-	400	800	NS	14.3		20.2	24.5	14.5	14.5
Mercury	SW7471A	7439-97-6	mg/kg	4.7	70	0.72	nc	11	46	0.033	0.141	0	.158	0.165	0.171	0.134 J
Nickel	SW6020	7440-02-0	mg/kg	410	750	410	nc	1,500	22,000	26	24.9		23.3	36.3	25.1	20.0
Selenium	SW6020	7782-49-2	mg/kg	78	1,200	7.1	nc	390	5,800	0.52	0.533	0	.563	0.531	0.564	0.531
Silver	SW6020	7440-22-4	mg/kg	78	1,200	1.5	nc	390	5,800	0.80	0.216		3.46	0.674	0.156	0.142
Thallium⁴	SW6020	7440-28-0	mg/kg	0.78	12	5.5	nc	0.78	12	0.014	0.482	-	.424	0.379	0.451	0.337
Zinc	SW6020	7440-66-6	mg/kg	1,000	2,500	350	nc	23,000	350,000	370	87.6		91.7	93.1	86.1	71.6
Notes:																

Results shown in bold and highlighted blue equal or exceed one or more of the criteria listed.

c - carcinogenic; nc - noncarcinogenic

¹ TPESLs - Tropical Pacific Environmental Screening Levels for shallow soils (<3 meters below ground surface) where groundwater IS a current or potential source of drinking water (updated December 2016).

² EPA May 2016 Regional Screening Levels (RSLs) as presented at the following website at https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016 for target cancer risk of 1E-06 and target hazard quotient of 1.0. Risk based soil screening levels (SSLs) are based on the protection of ground water.

³ RSL is for hexavalent chromium

⁴ Selected background screening level from Table M in Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendix 1: Detailed Lookup Tables (Tropical Pacific Edition).

CASRN = Chemical Abstracts Service Registry Number NS = not specified

EPA - U.S. Environmental Protection Agency SIM = selected ion monitoring

mg/kg = milligram(s) per kilogram

Data Qualifiers:

J = The analyte was positively identified; the quantitation is estimated.

U = The analyte was analyzed for, but not detected. The associated numerical value is at or below the limit of detection.

UJ = The analyte was not detected; however, the quantitation limit is estimated due to discrepancies in the associated quality control criteria.

Table 2 - Analytical Results for Replicate Soil Samples

Phase II Environmental Site Assessment

Masalog Ammunition Depot

									Field S	ample Identifier		MAD-DU06	MAD-DUC		
									San	ple Description	DU05	Replicate from DU05	Replicate fro DU05	m	Relative
									Date of Sa	mple Collection	12-Dec-2016	12-Dec-2016	12-Dec-20	16	Standard
				TPESLs ¹				FPA Region	al Screening	·				_	Deviation
Analyte	Analytical Method	CASRN	Units	Unrestricted	Commercial/In dustrial	Background	c/nc	Residential	Industrial	Risk-based SSL	Results Q	Results Q	Results	Q	
Polycyclic Aromatic Hydrocarbons		-			-										
Acenaphthene	SW8270C SIM	83-32-9	mg/kg	120	120	NS	nc	3,600	45,000	5.5	0.00095 U	0.00096 U	0.0011	J	NC
Acenaphthylene	SW8270C SIM	208-96-8	mg/kg	5.5	5.5	NS	-	NS	NS	NS	0.0071 J	0.012 J	0.014	J	32%
Anthracene	SW8270C SIM	120-12-7	mg/kg	4.2	4.2	NS	nc	18,000	230,000	58	0.00047 U	0.00054 J	0.00053	J	NC
Benzo(a)anthracene	SW8270C SIM	56-55-3	mg/kg	10	10	NS	С	0.16	2.9	0.0042	0.00095 U	0.00096 U	0.0011	U	NC
Benzo(b)fluoranthene	SW8270C SIM	205-99-2	mg/kg	5.4	5.4	NS	С	0.16	2.9	0.041	0.0045	0.0050	0.0049		6%
Benzo(k)fluoranthene	SW8270C SIM	207-08-9	mg/kg	29	29	NS	С	1.6	29	0.40	0.00095 U	0.00096 U	0.0011	U	NC
Benzo(g,h,i)perylene	SW8270C SIM	191-24-2	mg/kg	35	35	NS	-	NS	NS	NS	0.00095 U	0.00096 U	0.0011	U	NC
Benzo(a)pyrene	SW8270C SIM	50-32-8	mg/kg	1.6	2.9	NS	С	0.016	0.29	0.0040	0.00095 U	0.00096 U	0.0011	U	NC
Chrysene	SW8270C SIM	218-01-9	mg/kg	30	30	NS	С	16	290	1.2	0.0027	0.0024 J	0.0019	J	NC
Dibenz(a,h)anthracene	SW8270C SIM	53-70-3	mg/kg	1.6	2.9	NS	С	0.016	0.29	0.013	0.00095 U	0.00096 U	0.0011	U	NC
Fluoranthene	SW8270C SIM	206-44-0	mg/kg	87	87	NS	nc	2,400	30,000	89	0.0023 J	0.0015 J	0.0013	J	NC
Fluorene	SW8270C SIM	86-73-7	mg/kg	93	93	NS	nc	2,400	30,000	5.4	0.0015 J	0.0022 J	0.0023	J	NC
Indeno(1,2,3-cd)pyrene	SW8270C SIM	193-39-5	mg/kg	9.6	9.6	NS	С	0.16	2.9	0.13	0.00095 U	0.00096 U	0.0011	U	NC
1-Methylnaphthalene	SW8270C SIM	90-12-0	mg/kg	0.89	0.89	NS	С	18	73	0.0060	0.0016 J	0.0017 J	0.0011	U	NC
2-Methylnaphthalene	SW8270C SIM	91-57-6	mg/kg	1.9	1.9	NS	nc	240	3,000	0.19	0.0028	0.0033	0.0019	J	NC
Naphthalene	SW8270C SIM	91-20-3	mg/kg	3.1	3.1	NS	С	3.8	17	0.00054	0.0043	0.0056	0.0030		30%
Phenanthrene	SW8270C SIM	85-01-8	mg/kg	69	69	NS	-	NS	NS	NS	0.0016 J	0.0022 J	0.0016	J	NC
Pyrene	SW8270C SIM	129-00-0	mg/kg	44	44	NS	nc	1,800	23,000	13	0.0021 J	0.0015 J	0.0013	J	NC
Explosive Residues												I	I		
2-Amino-4,6-dinitrotoluene	SW8330B	35572-78-2	mg/kg	1.8	1.8	NS	n	150	2,300	0.030	0.041 UJ	0.041 UJ	0.040	UJ	NC
4-Amino-2,6-dinitrotoluene	SW8330B	19406-51-0	mg/kg	0.52	0.52	NS	n	150	2,300	0.030	0.041 UJ	0.041 UJ		UJ	NC
2,4-Diamino-6-nitrotoluene	SW8330B	6629-29-4	mg/kg	NS	NS	NS	-	NS	NS	NS	0.10 UJ	0.099 UJ		UJ	NC
2,6-Diamino-4-nitrotoluene	SW8330B	59229-75-3	mg/kg	NS	NS	NS	-	NS	NS	NS	0.10 UJ	0.099 UJ		UJ	NC
3.5-Dinitroaniline	SW8330B	618-87-1	mg/kg	NS	NS	NS	-	NS	NS	NS	0.041 UJ	0.041 UJ		UJ	NC
1,3-Dinitrobenzene	SW8330B	99-65-0	mg/kg	0.12	0.12	NS	nc	6.3	82	0.0018	0.040 UJ	0.040 UJ		UJ	NC
2,4-Dinitrotoluene	SW8330B	121-14-2	mg/kg	0.024	0.024	NS	C	1.7	7.4	0.00032	0.040 UJ	0.040 UJ		UJ	NC
2.6-Dinitrotoluene	SW8330B	606-20-2	mg/kg	0.0051	0.0051	NS	c	0.36	1.5	0.000067	0.11 UJ	0.11 UJ		UJ	NC
HMX	SW8330B	2691-41-0	mg/kg	19	19	NS	nc	3,900	57,000	1.3	0.21 UJ	0.21 UJ		UJ	NC
Nitrobenzene	SW8330B	98-95-3	mg/kg	0.0053	0.0053	NS	c	5.1	22	0.000092	0.10 UJ	0.099 UJ		UJ	NC
Nitroglycerin	SW8330B	55-63-0	mg/kg	0.039	0.039	NS	n	6.3	82	0.00085	0.80 UJ	0.79 UJ		UJ	NC
2-Nitrotoluene	SW8330B	88-72-2	mg/kg	0.0049	0.0049	NS	c	3.2	15	0.00030	0.075 UJ	0.074 UJ		UJ	NC
3-Nitrotoluene	SW8330B	99-08-1	mg/kg	0.12	0.12	NS	nc	6.3	82	0.0016	0.11 UJ	0.11 UJ		UJ	NC
4-Nitrotoluene	SW8330B	99-99-0	mg/kg	0.29	0.29	NS	c	34	140	0.0040	0.11 UJ	0.11 UJ	0.11		NC
PETN (Pentaerythritol tetranitrate)	SW8330B	78-11-5	mg/kg	2.1	2.1	NS	nc/c	130	570	0.028	0.80 UJ	0.79 UJ	0.78		NC
RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine)	SW8330B	121-82-4	mg/kg	0.010	0.010	NS	C	6.1	28	0.00027	0.040 UJ	0.040 UJ	0.039		NC
Tetryl (Methyl-2,4,6-trinitrophenylnitramine)	SW8330B	479-45-8	mg/kg	31	31	NS	nc	160	2,300	0.37	0.10 UJ	0.099 UJ	0.000		NC
1,3,5-Trinitrobenzene	SW8330B	99-35-4	mg/kg	2.8	2.8	NS	nc	2,200	32,000	2.1	0.040 UJ	0.040 UJ	0.039		NC
2,4,6-Trinitrotoluene	SW8330B	118-96-7	mg/kg	1.2	1.2	NS	C	2,200	96	0.015	0.040 UJ	0.040 UJ			NC
Other Explosives			33				-								
White phosphorus	SW7580	7723-14-0	mg/kg	NS	NS	NS	n	1.6	23	0.0015	0.0010 UJ	0.0011 UJ	0.0010	UJ	NC

Phase II Environmental Site Assessment

Masalog Ammunition Depot

									Field S	ample Identifier	MAD-DU05	MAD-DU06	MAD-DU07		
									San	ple Description	DU05	Replicate from DU05	Replicate from DU05		Relative
									Date of Sa	mple Collection	12-Dec-2016	12-Dec-2016	12-Dec-201	6 S	Standard
	Apolytical			TPESLs ¹			EPA Regional Screening Levels ²						D	Deviation ³	
Analyte	Analytical Method	CASRN	Units	Unrestricted	Commercial/In dustrial	Background	c/nc	Residential	Industrial	Risk-based SSL	Results Q	Results Q	Results	2	
Total Metals															
Antimony	SW6020	7440-36-0	mg/kg	6.3	93	45	nc	31	470	0.35	0.340	0.342	0.262	J	14%
Arsenic	SW6020	7440-38-2	mg/kg	24	95	20	С	0.68	3.0	0.0015	8.80	9.40	8.42		6%
Beryllium	SW6020	7440-41-7	mg/kg	31	150	3.0	n	160	2,300	19	0.833	0.901	0.870		4%
Cadmium	SW6020	7440-43-9	mg/kg	7.4	65	15	nc	71	980	0.69	1.97	1.97	1.82		5%
Chromium	SW6020	7440-47-3	mg/kg	1,100	1,100	1,000	С	0.30	6.3	0.00067	93.0	104	99.2		6%
Copper	SW6020	7440-50-8	mg/kg	630	2,500	190	nc	3,100	47,000	28	94.0	102	86.3	J	8%
Lead	SW6020	7439-92-1	mg/kg	400	800	50	-	400	800	NS	14.5	15.0	18.6		14%
Mercury	SW7471A	7439-97-6	mg/kg	4.7	70	0.72	nc	11	46	0.033	0.134 J	0.142	0.137	J	NC
Nickel	SW6020	7440-02-0	mg/kg	410	750	410	nc	1,500	22,000	26	20.0	23.1	19.4	J	10%
Selenium	SW6020	7782-49-2	mg/kg	78	1,200	7.1	nc	390	5,800	0.52	0.531	0.557	0.484		7%
Silver	SW6020	7440-22-4	mg/kg	78	1,200	1.5	nc	390	5,800	0.80	0.142	0.113	0.108		15%
Thallium ⁴	SW6020	7440-28-0	mg/kg	0.78	12	5.5	nc	0.78	12	0.014	0.337	0.408	0.378		10%
Zinc	SW6020	7440-66-6	mg/kg	1,000	2,500	350	nc	23,000	350,000	370	71.6	74.4	66.2	J	6%

Results shown in bold and highlighted blue equal or exceed one or more of the criteria listed.

¹ TPESLs - Tropical Pacific Environmental Screening Levels for shallow soils (<3 meters below ground surface) where groundwater IS a current or potential source of drinking water (updated December 2016).

² EPA May 2016 Regional Screening Levels (RSLs) as presented at the following website at https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016 for target cancer risk of 1E-06 and target hazard quotient of 1.0. Risk ³ RSL is for hexavalent chromium

⁴ Selected background screening level from Table M in Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendix 1: Detailed Lookup Tables (Tropical Pacific Edition).

CASRN = Chemical Abstracts Service Registry Number

NC = not calculated

EPA - U.S. Environmental Protection Agency NS = not specified

mg/kg = milligram(s) per kilogram SIM = selected ion monitoring

Data Qualifiers:

J = The analyte was positively identified; the quantitation is estimated.

U = The analyte was analyzed for, but not detected. The associated numerical value is at or below the limit of detection.

UJ = The analyte was not detected; however, the quantitation limit is estimated due to discrepancies in the associated quality control criteria.

 Table 3 - Relative Standard Deviation and 95 Percent Upper Confidence Limit Calculations for Replicate Samples

 Phase II Environmental Site Assessment

 Masalog Ammunition Depot

		Sample	Sample	Result		Standard	Relative 95% UCL Calculations		ons		
Analyte	EPA Method	Identification	Туре	(mg/kg)	Mean	Deviation	Standard Deviation	Number of samples	t value	95% UCL	Comment
		MAD-DU05	Primary	0.0071							The data indicates that there is 95% confidence
Acenaphthylene	SW8270C SIM	MAD-DU06	Duplicate	0.012	0.011	0.0036	32%	3	2.9	0.017	that the true mean for acenaphthylene does not exceed
		MAD-DU07	Triplicate	0.014							0.017 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.0045							The data indicates that there is 95% confidence
Benzo(b)fluoranthene	SW8270C SIM	MAD-DU06	Duplicate	0.0050	0.0048	0.0003	6%	3	2.9	0.0052	that the true mean for benzo(b)fluoranthene does not exceed
		MAD-DU07	Triplicate	0.0049							0.0052 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.0043							The data indicates that there is 95% confidence
Naphthalene	SW8270C SIM	MAD-DU06	Duplicate	0.0056	0.0043	0.0013	30%	3	2.9	0.0065	that the true mean for naphthalene does not exceed
		MAD-DU07	Triplicate	0.0030							0.0065 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.340	0.315	0.046	14%		2.9	0.392	The data indicates that there is 95% confidence
Antimony	SW6020	MAD-DU06	Duplicate	0.342				3			that the true mean for antimony does not exceed
		MAD-DU07	Triplicate	0.262							0.392 mg/kg within this Decision Unit
		MAD-DU05	Primary	8.80							The data indicates that there is 95% confidence
Arsenic	SW6020	MAD-DU06	Duplicate	9.40	8.9	0.494	5.6%	3	2.9	9.7	that the true mean for arsenic does not exceed
		MAD-DU07	Triplicate	8.42							9.7 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.833							The data indicates that there is 95% confidence
Beryllium	SW6020	MAD-DU06	Duplicate	0.901	0.87	0.034	3.9%	3	2.9	0.93	that the true mean for beryllium does not exceed
		MAD-DU07	Triplicate 0.870		0.93 mg/kg within this Decision Unit						
		MAD-DU05	Primary	1.97							The data indicates that there is 95% confidence
Cadmium	SW6020	MAD-DU06	Duplicate	1.97	1.92	0.087	5%	3	2.9	2.07	that the true mean for cadmium does not exceed
		MAD-DU07	Triplicate	1.82							2.07 mg/kg within this Decision Unit

 Table 3 - Relative Standard Deviation and 95 Percent Upper Confidence Limit Calculations for Replicate Samples

 Phase II Environmental Site Assessment

 Masalog Ammunition Depot

Anglyta	EPA Method	Sample	Sample	Result	Mean	Standard	Relative Standard		UCL Calculat	ions	Comment
Analyte	EPA Wethod	Identification	Туре	(mg/kg)	Mean	Deviation	Standard Deviation	Number of samples	t value	95% UCL	Comment
		MAD-DU05	Primary	93.0							The data indicates that there is 95% confidence
Chromium	SW6020	MAD-DU06	Duplicate	104	99	5.5	6%	3	2.9	108	that the true mean for chromium does not exceed
		MAD-DU07	Triplicate	99.2							108 mg/kg within this Decision Unit
		MAD-DU05	Primary	94.0							The data indicates that there is 95% confidence
Copper	SW6020	MAD-DU06	Duplicate	102	94	7.85	8%	3	2.9	107	that the true mean for copper does not exceed
		MAD-DU07	Triplicate	86.3							107 mg/kg within this Decision Unit
		MAD-DU05	Primary	14.5							The data indicates that there is 95% confidence
Lead	SW6020	MAD-DU06	Duplicate	15.0	16.0	2.24	14%	3	2.9	19.8	that the true mean for lead does not exceed
		MAD-DU07	Triplicate	18.6							19.8 mg/kg within this Decision Unit
		MAD-DU05	Primary	20.0							The data indicates that there is 95% confidence
Nickel	SW6020	MAD-DU06	Duplicate	23.1	20.8	1.986	10%	3	2.9	24.2	that the true mean for nickel does not exceed
		MAD-DU07	Triplicate	19.4							24.2 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.531							The data indicates that there is 95% confidence
Selenium	SW6020	MAD-DU06	Duplicate	0.557	0.524	0.037	7%	3	2.9	0.586	that the true mean for selenium does not exceed
		MAD-DU07	Triplicate	0.484							0.586 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.142							The data indicates that there is 95% confidence
Silver	SW6020	MAD-DU06	Duplicate	0.113	0.12	0.018	15.2%	3	2.9	0.15	that the true mean for silver does not exceed
		MAD-DU07	Triplicate	0.108							0.152 mg/kg within this Decision Unit
		MAD-DU05	Primary	0.337							The data indicates that there is 95% confidence
Thallium	SW6020	MAD-DU06	Duplicate	0.408	0.37	0.036	10%	3	2.9	0.43	that the true mean for thallium does not exceed
		MAD-DU07	Triplicate	0.378							0.434 mg/kg within this Decision Unit
		MAD-DU05	Primary	71.6							The data indicates that there is 95% confidence
Zinc	SW6020	MAD-DU06	Duplicate	74.4	71	4.2	6%	3	2.9	78	that the true mean for zinc does not exceed
		MAD-DU07	Triplicate	66.2							78 mg/kg within this Decision Unit
<u>S:</u>	Milligram(s) per kilog Upper Confidence L Percent										

Table 4 - General Data Qualifying Conventions

Phase II Environmental Site Assessment Masalog Ammunition Depot

QC Requirement	Criteria	Flag	Flag Applied To
Holding Time	Time exceeded for extraction or analysis	J for the positive results; R or UJ for non-detects*	Analytes in the sample
Sample Preservation	Sample not preserved (If sample preservation was not done in the field but was performed at the laboratory upon sample receipt, no flagging is required)	J positive results; R or UJ for non- detects*	Sample
	Temperature out of control	J for positive results; R or UJ for non- detects*	Sample
Sample Integrity (volatile analytes)	Bubbles in VOA vial >1/4 inch used for analysis	J for the positive results; UJ for non- detects	Sample
Instrument Tuning	Ion abundance method-specific criteria not met	R for all results	Associated samples in analytical batch
Initial Calibration	Target analytes must be within method- specified criteria	J for positive results; R for non-detects	Associated samples in analytical batch
Second Source Check or Continuing Calibration	Target analytes must be within method- specified criteria	High Bias: J for positive results, no flag for non-detects Low Bias: J for positive results, UJ for non-detects R for all non-detects greater than twice the control criteria	All associated samples in analytical batch
Low Level Calibration Check or Interference Check Sample	Target analytes must be within 20% of expected value	High Bias: J for positive results, no flag for non-detects Low Bias: J for positive results, UJ for non-detects R for all non-detects greater than twice the control criteria	All associated samples in analytical batch
LCS	%R > UCL %R < LCL	J for the positive results; J for the positive results; R for the non- detects	The specific analyte(s) in all samples in the associated analytical batch
Internal Standards	Area > UCL Area < LCL Sample is re-extracted and reanalyzed and recovery outside of criteria is confirmed as a matrix effect	J for positive results J for positive results J for positive results; UJ for non- detects	Sample
Surrogate Spikes	%R > UCL %R < LCL and >10% %R <10% Excessive dilution*	J for positive results J for positive results; UJ for non- detects J for positive results; R for non- detects No flag required	Sample
Blanks (Method, calibration, or field)	Analyte(s) detected > 1/2 LOQ (use the blank of the highest concentration)	UJ for positive sample results less than or equal to 5x highest blank concentration (10x for common lab contaminants)	All samples in preparation, field or analytical batch, whichever applies

Table 4 - General Data Qualifying Conventions

Phase II Environmental Site Assessment Masalog Ammunition Depot

QC Requirement	Criteria	Flag	Flag Applied To
	RPD or RSD >CL and field duplicates/replicates >LOQs	J for the positive results	The specific analyte(s) in samples collected on the same sampling date.
Field duplicates or field replicates	or		Note: No flagging is required for RSDs based on results reported below the LOQ.
	one field duplicate/replicate >LOQ, one ND	UJ for the non-detects	
	MS or MSD % R>UCL	J for detected results and UJ for non- detected results	
MS/MSD	or MS or MSD % R <lcl or</lcl 	No flag required	The specific analyte(s) in the parent sample
	MS/MSD RPD>CL; Sample concentration > 4x spike concentration; Excessive dilution*	No flag required	
Post-Digestion Spike	Target analytes must be within 25% of expected value	High Bias: J for positive results Low Bias: J for positive results; UJ for non-detects	The specific analyte(s) in the parent sample
Serial Dilutions	Target analytes must be within 10% of expected value	If post spike not analyzed High Bias: J for positive results Low Bias: J for positive results; UJ for non-detects	The specific analyte(s) in the parent sample
Confirmation	RPD between primary and confirmation results > 40%	J for positive results	Sample
Retention Time Window	Analyte within established window	R for all results	Sample

* = Based on analyte-specific review for nondetectable results,

general guidelines for nonvolatile analytes is UJ flag if holding time has not been exceeded by factor of 2 and R flag if greater than a factor of 2. For volatile analytes, the guideline is R flag if holding time has been exceeded.

LCL = lower confidence limit

LCS = laboratory control sample

MS = matrix spike

MSD = matrix spike duplicate

ND = not detected

QC = quality control

LOQ = limit of quantitation RPD = relative percent difference RSD = relative standard deviation UCL = upper confidence limit APPENDIX A

PERMITS

This page intentionally left blank

Ralph DLG. Torres Governor

Victor B. Hocog Lt. Governor Commonwealth of the Northern Marian Islands OFFICE OF THE GOVERNOR

Bureau of Environmental and Coastal Quality DEQ: P.O. Box 501304, DCRM: P.O. Box 10007, Saipan, MP 96950-1304 DEQ Tel.: (670) 664-8500/01; Fax: (670) 664-8540 DCRM Tel.: (670) 664-8300; Fax: (670) 664-8315 www.deq.gov.mp and www.crm.gov.mp

Frank M. Rabauliman Administrator

> Frances A. Castro Director, DCRM

June 15, 2016

Robert Shambach (Permittee) EA Engineering, Science and Technology 1001 Army Drive Suite 103 Barrigada, Guam 96913

RE: Commercial Earthmoving & Erosion Control Permit No. 2016 COM 116T

Dear Robert Shambach:

The Division of Environmental Quality (DEQ) has reviewed your earthmoving permit application to conduct earthmoving activities, and has approved issuance of this permit. Thus, under the authority granted to DEQ by the Commonwealth Environmental Protection Act (CEPA), PL 3-23, 2 CMC §3122, and the CNMI Earthmoving and Erosion Control Regulations, NMIAC §65-30, and taking into consideration the comments and conditions requested by the other "ONE START" permitting agencies (including the CNMI Division of Fish and Wildlife, Historic Preservation Office, and Coastal Resource Management Office), DEQ hereby grants approval for your earthmoving activity provided you adhere to the following conditions:

APPLICABILITY

 This permit applies only to land clearing and/or earthmoving activities for the proposed Phase II ESA, Masalog Ammunition Depot project to be conducted on Lot # 271 T 61, located in Pina, Tinian. Methods, which will be employed in this project, include; Hand digging, and hand clearing of vegetation only.

GENERAL CONDITIONS

GENERAL OBLIGATIONS AND LIMITATIONS

2. The permittee must notify DEQ at least two (2) working days prior to commencement of the permitted activity.

Permit No.: 2016 COM 116T Page 2 of 7

- 3. The permittee shall keep this permit readily available at the project site, at all times. The permittee may be ordered to cease all work if the earthmoving and erosion control permit is not available during inspection by DEQ staff or inspectors from other ONE-START agencies.
- 4. If the permittee is not the same person as the final owner or operator of the final facility, activity, and/or lot for which this permit is being issued, the permittee shall be responsible for providing the final facility/activity/lot owner and operator with a copy of this permit; for notifying them of all requirements of this permit, and all post-construction maintenance requirements that may be associated with the permanent stormwater control and ESC systems; and any post-construction requirements that may be included as conditions of this permit by any other ONE-START agency (including, but not limited to land clearing restrictions and archeological resource protection requirements.)
- 5. All earthmoving operations shall be conducted in accordance with the plans and specifications stated in your DEQ approved earthmoving application package, including all revisions that may have been approved by DEQ. Should there be any deviation from the approved plans and specifications, DEQ must be notified in writing within ten (10) working days prior to the planned commencement of construction work related to the revisions. Commencement of construction related to any revisions may not start without approval by DEQ.
- 6. The earthmoving permit applies to land clearing and/or earthmoving activities for the proposed **Phase II ESA, Masalog Ammunition Depot project only**. DEQ must be notified in writing If the permittee plans to revise or expand the approved project, prior to commencement of any work related to the proposed revisions or expansion. DEQ may require additional submission of plans and specifications, or may require the permittee to apply for an amendment or a new permit.
- 7. The permittee shall immediately cease further earthmoving and/or landclearing activity upon the discovery of any hazardous or unusual substance or objects (e.g. ordinance, old drums, oils, chemicals, etc.), and shall immediately report the discovery to DEQ. Failure to immediately report such findings may result in enforcement proceedings and penalties, including permit revocation.
- 8. Excavated material may only be re-used on-site, as part of the approved grading plans, or at a designated landfill facility operated by the CNMI government. Disposal or re-use of excavated material on any other location may only occur if in accordance with an approved Earthmoving and Erosion Control Permit for each additional location.
- 9. The permittee shall provide Temporary Toilet Facilities (TTF) for any construction job-site where working toilets connected to a sanitary sewer system are not readily

Permit No.: 2016 COM 116T Page 3 of 7

available for the needs of the employees. One temporary toilet facility is required for 1-15 employees, two TTF for 15-30 employees, three TTF for 31-50 employees.

- 10. The permittee shall apply for an Individual Wastewater Disposal System (IWDS) or Other Wastewater Treatment System (OWTS) permit prior to construction of any type of on-site wastewater treatment and disposal system, such as a septic system or on-site package treatment plant.
- 11. The permittee shall apply for and obtain a Pesticide Structural Treatment permit from DEQ, at least 30 days prior to conducting applications of any type of pesticide treatment on concrete structure or building foundation projects. Failure to comply with this permit condition may result in enforcement proceedings and penalties, including permit revocation.
- 12. The permittee shall be responsible for preventing discharge of construction site chemicals through the proper use of Best Management Practices, such as storage, material use, spill prevention and control, hazardous waste management, concrete waste management, vehicle and equipment cleaning, and maintenance and fueling. The permittee is directed to internet resources provided at no cost by the U.S. Environmental Protection Agency for guidance as to how to apply such best management practices, which can be found at the following URL:

http://cfpub1.epa.gov/npdes/stormwater/swppp.cfm

13. Earthmoving or land clearing activities which disturb one or more acres of land are regulated by the Federal government, and are required to obtain coverage under the "Construction General Permit" (CGP), administered by the U.S. Environmental Protection Agency (USEPA), under the National Pollutant Discharge Elimination System (NPDES) permit system. All permittees are responsible for determining whether they are responsible for obtaining coverage under this permit, and for submittal of all application documents as required, including the Notice of Intent (NOI) form to USEPA, and the preparation of a Stormwater Pollution Prevention Plan (SWPPP), which must be submitted and approved by DEQ prior to receiving coverage under the CGP.

On-line instructions for applying for coverage under the CGP may be found here: <u>http://cfpub1.epa.gov/npdes/stormwater/application_coverage.cfm</u>

Instructions and guidance on preparing an SWPPP may be found here: <u>http://cfpub1.epa.gov/npdes/stormwater/swppp.cfm</u>

14. For projects that include clearing of trees and other vegetation on public land, CNMI Forestry Office permitting regulations may apply. Applicant shall contact the Commonwealth Forestry Office for further details.

Permit No.: 2016 COM 116T Page 4 of 7

15. The Division of Environmental Quality (DEQ) reserves the right to impose additional mitigating measures as deemed necessary to protect the welfare of the public or the environment.

TEMPORARY EROSION AND SEDIMENT CONTROL (ESC)

- 16.All earthmoving operations shall be conducted in accordance with the approved ESC plans and in a manner that prevents accelerated land erosion, off-site runoff, and/or off-site discharge of sediment and other pollutants. Erosion & Sediment Control Plans must be readily available on-site.
- 17. The area affected by earthmoving operations at any one time during activities shall be kept to a minimum by either selective clearing; incremental phasing of development; or other means.
- 18. No land clearing and/or earthmoving activities shall be conducted during periods of heavy rainfall or storm events, unless discharge of runoff, sediment, or other pollutants is not possible, and the permittee receives written permission from DEQ to continue operations in such conditions.
- 19. Whenever the ground cover is removed or disturbed or whenever fill material is placed on the site, the exposed surface shall be treated to the extend necessary to eliminate dust arising from the exposed material.
- 20. All areas disturbed by earthmoving operations must be stabilized (e.g., by revegetation, paving, slope stabilization, or other approved means) as soon as possible after final grade has been established. DEQ must be notified in writing in the event that stabilization measures within any area disturbed by construction are delayed by more than fourteen (14) calendar days.
- 21. The approved temporary erosion and sediment control (ESC) measures or structures (silt fence, ponding basin, swale, earth berm etc.) must be installed prior to commencement of other construction, land clearing and/or earthmoving activities at the project site. DEQ must be notified for inspection no less than two (2) working days following implementation of the approved temporary erosion and stormwater control structures.
- 22. The permittee shall be responsible for seeing that proper erosion & sediment control (ESC) measures are implemented to prevent soil erosion, stormwater runoff, and discharge of sediment from the project site. It is an expected variable of construction that additional ESC measures are sometimes appropriate and required, beyond the ESC measures provided for in the original, approved plans and specifications. The permittee is obligated to monitor the performance of the ESC measures and correct failures, shortcomings, and deficiencies as they arise. Based

Permit No.: 2016 COM 116T Page 5 of 7

on the findings by DEQ following any inspection of the permitted activity, the permittee may also be directed by DEQ to repair or install additional ESC measures to mitigate for inadequate control of off-site or on-site runoff, erosion, or sedimentation; other discharges of pollutants; and/or nuisance conditions.

23. All ESC measures (for example, silt fence, swales, sedimentation basins, etc.) shall be maintained in good working order by the permittee, until such time that final stabilization of all disturbed areas has been achieved (e.g., by re-vegetation, paving, slope stabilization, or other approved means). Inspection of all ESC measures must be conducted and recorded by the permittee at least weekly, and after every runoff event. Inspection and maintenance records shall be kept by the permittee on-site, and readily accessible to DEQ inspection personnel. Failure to adequately maintain ESC measures and/or keep records may be grounds for enforcement proceedings and penalties, including permit revocation.

PERMANENT STORMWATER CONTROL SYSTEM

- 23. The permittee shall notify DEQ for inspection prior to concealment (i.e., burial) of any underground drainage and runoff disposal/treatment systems, such as infiltrators, seepage pits, and leaching fields. No concealment of such drainage system components shall commence without approval from DEQ. DEQ may require excavation to expose concealed work if the permittee fails to provide proper notification.
- 24. The permittee shall notify DEQ before final paving of parking lots, roadways and driveways, where any underground drainage or disposal (e.g., infiltration system, leaching field) has been constructed. No paving activities shall commence without approval from DEQ. DEQ may require cutting of pavement and excavation to expose concealed work if the permittee fails to provide proper notification.
- 25. The permittee shall be responsible for protecting all permanent stormwater system components from damage caused by erosion and sedimentation until construction is completed, or until the drainage area serviced by the component is completely stabilized. Temporary protection measures such as catch basin protection may not have been included in the plans and specifications provided by the permittee. Nevertheless, the permittee is responsible for protecting such components, and is directed to the 2006 CNMI / Guam Stormwater Management Manual for standard plans and specifications for installing such protective measures.

POST-CONSTRUCTION REQUIREMENTS

26. All unused materials and debris (e.g. large rocks and construction waste materials or debris-concrete, hollow blocks, rebar, tin roof, wooden frames, scaffolds, cement and asphalt slabs, pipes, plastic sheets, electrical material, etc.) must immediately be removed from the project site and disposed at the Tinian Dump/Landfill. No other disposal site or method of debris disposal is permitted, without prior, written approval from DEQ.

27. Long-term maintenance of any permanent ESC measures and/or permanent stormwater control system components is the responsibility of the owner and/or operator of the final facility, activity, or lot. The owner and/or operator shall be responsible for timely correction of any failure or damage to any component of the permanent ESC or stormwater control system.

AGENCY CONDITIONS:

DIVISION OF FISH & WILDLIFE CONDITIONS:

1. The Division of Fish & Wildlife has reviewed the above referenced permit, and visited the permit site. Fish & Wildlife does not anticipate any impacts to threatened or endangered species from the proposed actions.

HISTORIC PRESERVATION CONDITIONS:

- 1. The permittee shall notify the Tinian Historic Preservation Office no less than five (5) working days prior to the commencement of this proposed project activity, so that HPO can coordinate an appropriate schedule to perform monitoring work/procedure on the project.
- 2. In the event that unanticipated significant historic and /or archaeological deposits or features are discovered during the project's earthmoving activities, the permittee is required to immediately cease all work in the vicinity of the discovery and notify HPO for consultation and possible development of mitigation measures.
- 3. HPO will determine appropriate mitigation measures in which the permittee must ensure that these measures are implemented. Mitigation measures could include further research, monitoring, survey, testing, and/or excavation. Mitigation measures must be carried out by a professional archaeologist meeting the qualifications published by the U.S. Department of the Interior's standards 36 CFR Part 61.
- 4. The permittee is responsible for all costs of mitigation.
- 5. Failure of the permittee to comply with the above HPO conditions will result in a violation upon which a fine may be assessed.

Permit No.: 2016 COM 116T Page 7 of 7

DIVISION OF COASTAL RESOURCES MANAGEMENT

1. No DCRM permit required.

OTHER GOVERNMENT PERMITS AND REQUIREMENTS

28. This permit does not relieve the permittee or the final owner or operator of any obligations imposed by other CNMI or Federal Laws, either statutory or otherwise.

TERM OF PERMIT

29. This permit expires one year from the issued date. DEQ must be notified in writing at least one (1) month before to the expiration date for any renewal or extension of this permit.

RIGHT OF ENTRY AND INSPECTION

30. As provided for under the Earthmoving and Erosion Control Regulations at NMIAC §65-30-600, and 2 CMC §3132, the permittee shall allow DEQ personnel, as well as inspection personnel from other ONE-START agencies, prompt access to the premises covered by this permit for the purposes of inspecting the premises for compliance with the terms of this permit. Inspections may be made with or without advance notice to the permittee.

PENALTIES

Failure to comply with the above conditions shall constitute a violation of the CNMI Earthmoving Rules and Regulations, and may result in enforcement action, including civil penalties of up to \$25,000 per violation, per day; or criminal penalties, as authorized under the Earthmoving and Erosion Control Regulations at NMIAC §65-30-700 and 2 CMC §3131.

If you have any questions regarding the conditions of this permit, please contact our office at telephone numbers 664-8500 & 8501.

Sincerely,

Administrator

B U	REAU	OF ENVIROMENT	TAL AND COASTAL	QUALITY	
CNNT	EA		D EROSION CONT UTHORIZATION	ROL	
DATE EXPIRES	S:	06/15/2017	PERMIT NUMBER:	2016 COM 116T	
PERMITTEE:	Robe	ert Shambach			
ADDRESS:	1001 /	Army Drive Suite 103	3, Barrigada, Guam 96	913	
ATHORIZED W	ORK:	Phase II ESA, M	lasalog Ammunition D	epot	
LOCATION:	Pina		ISLAND:	Tinian	
		the	hail		
		Frank M. R	abauliman	00/15/2016	
		ADMINISTRATOR		DATE	
THIS NOTICE MUST BE CONSPICUOUSLY DISPLAYED AT THE SITE OF WORK DEQ CONTACT: 664-8500					

APPENDIX B

PHOTOGRAPHS

This page intentionally left blank

Project No. 63019.01	Description:	Team briefing to review Final WP/SAP, APP, and SSHP prior to traveling to the field to perform fieldwork.	Photo 1	
03019.01	Site Name: Client:	Phase II ESA at Masalog Ammunition Depot Department of Public Lands, Commonwealth of Northern Marianas Islands	Photo Date 12/05/2016	
Project No. 63019.01	Description: Site Name:	UXO field team performing surface sweep in individual 5-foot wide lanes with 15 feet between sweep lanes; SUXOS in blue shirt following to maintain spacing and direction of individual UXO Technicians; looking northeast. Phase II ESA at Masalog Ammunition Depot	Photo 2	
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	Photo Date 12/05/2016	

Project No. 63019.01	Description: Site Name: Client:	Typical example of surface munitions debris of former 500 pound bomb with partially breached shell; looking northwest.Phase II ESA at Masalog Ammunition DepotDepartment of Public Lands, Commonwealth of Northern Marianas Islands	Photo 3 Photo Date 12/08/2016

		<image/>	
Project No.	Description:	Surface munitions debris consisting of former bomb baseplate; looking south.	Photo 5
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/05/2016
Project No.	Description:	Surface munitions debris consisting of incendiary tubes; looking west.	Photo 6
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/06/2016

		<image/>	
Project No.	Description:	Munitions debris brought to surface within root ball of fallen tree; looking north.	Photo 7
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/07/2016
		<image/>	
Project No.	Description:	Surface munitions debris consisting of end caps from incendiary tubes; looking southwest.	Photo 8
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/07/2016

Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2010 Image: Client: Department of Public Lands, Commonwealth of Northern Marianas Islands <th colspan="5"></th>					
Internation Finder Data with any financial opport Finder Data Client: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Data with any financial opport Image: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Department of Public Lands, Commonwealth of Northern Marianas Islands Image: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Department of Public Lands, Commonwealth of Northern Marianas Islands Image: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Department of Public Lands, Commonwealth of Northern Marianas Islands Image: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Department of Public Lands, Commonwealth of Northern Marianas Islands Image: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Department of Public Lands, Commonwealth of Northern Marianas Islands Image: Department of Public Lands, Commonwealth of Northern Marianas Islands 12/07/2016 Image: Department of Public Lands, Commonwealth of Northern Marianas Islands Image: Department of Northern Marianas Islands 12/07/2016 Image: Department of Department of Northern Marianas Islands Image: Department of Northern Marianas Islands Image: Department of Northern Marianas Islands 12	Project No.	Description:		Photo 9	
Project No.	63019.01			Photo Date	
Project No.		Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/07/2016	
Project No.					
	Project No. 63019.01		located in Grid A400; looking east.	Photo 10	
Photo Date Photo Pho				Photo Date 12/05/2016	

Project No.	Description:	Cluster of surface munition debris consisting of interior of incendiary bomb, located in Grid J200; looking southeast.	Photo 11
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/09/2016
Project No.	Description:	Material of Explosive Concern located on the surface of Grid L700; looking east.	Photo 12
63019.01	CHA NAME	Phase II ESA at Masalog Ammunition Depot	DL . 4 . D . 4 .
	Site Name:	Thase II ESA at Masalog Allinduntion Depot	Photo Date

Project No.	Description:	Site visit from CNMI DPL viewing surface Material of Explosive Concern located in Grid L700; looking northeast.	Photo 13
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/13/2016
Project No.	Description:	Site visit from CNMI DPL hiking up revetment located on K transect line; looking southeast.	Photo 14
63019.01	Site Name:	Phase II ESA at Masalog Ammunition Depot	Photo Date
	Client:	Department of Public Lands, Commonwealth of Northern Marianas Islands	12/13/2016

This page intentionally left blank

APPENDIX C

DAILY REPORTS AND FIELD LOGBOOK

This page intentionally left blank

Daily Reports

This page intentionally left blank

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI Contract No.: 600431-OC (DPL 15-003)

Project No.:6301901Daily Field Report No.:1Date:05 December 2016Project Title & Location:Phase II Environmental Site Assessment; Masalog Ammunition DepotSite, Pina, Tinian, CNMI

Weather: <u>Sunny</u>, Precipitation: <u>None</u>, Temp: Min. <u>80°F</u>, Max. <u>85°F</u>, Wind: <u>Trade winds</u>, <u>10 to</u> <u>15 mph from E/NE</u>

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	10
Nigel Harman	UXO Technician II	Aerotek	10
James Hipp	UXO Technician I	Aerotek	10
Jonathan Clark	UXO Technician I	Aerotek	10

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing & review of Work Plan
- 2. Tailgate safety meeting
- UXO assessment completed in 100 ft x 100 ft grids as follows: A000, A100, A200, A300, A400, A500, A600, A700, A800 B000, B100, B200, B300, B400, B500, B600, B700, B800
- 4. 18 grids assessed today; cumulatively 18 out of 126 total grids assessed during fieldwork
- 5. One significant unknown munitions debris located in grid A400; base plate present on ground surface but unable to assess if still connected to projectile
- 6. Debrief and daily summary meeting with SUXOS and UXOQCS

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

- Continue UXO assessment on remaining grids
- GPS UXO assessment flag placements

Outstanding Issues:

- UXO assessment performed on 40 foot strip along A cut line and 40 foot strip along C cut line leaving approximately 120 not assessed between the 40 foot strips in A and B grids. Deviated from Work Plan, but still provided approximately 40 percent coverage. Reviewed approach with Bob Shambach (EA Project Manager).
- Initial four grids cleared with Schonstedt set at Level 3, which assessed approximately 2 to 2.5 feet below ground surface (bgs). Large quantity of subsurface anomalies (more than 50 per grid) detected at this setting, which is below the planned 1 foot bgs soil sampling horizon. Reset Schonstedt at Level 2 after four grids complete, which assessed approximately 1.5 feet bgs.

Corrective Actions:

• Review UXO assessment approach described in Work Plan and revise field approach for tomorrow to conform with Work Plan assessment description.

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

Contract No.: 600431-OC (DPL 15-003) Project No.: 6301901 Daily Field Report No.: 2 Date: 06 December 2016 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot Site, Pina, Tinian, CNMI

Weather: <u>Mostly Sunny</u>, Precipitation: <u>Passing Showers</u>, Temp: Min. <u>80°F</u>, Max. <u>85°F</u>, Wind: <u>Trade winds</u>, 15 to 20 mph from E/NE

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	10
Nigel Harman	UXO Technician II	Aerotek	10
James Hipp	UXO Technician I	Aerotek	10
Jonathan Clark	UXO Technician I	Aerotek	10

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- UXO assessment completed in 100 ft x 100 ft grids as follows: C000, C100, C200, C300, C400, C500, C600, C700, C800 D000, D100, D200, D300, D400, D500, D600, D700, D800 E500, E600, E700, E800 F500, F600, F700, F800
- 4. 26 grids assessed today; cumulatively 44 out of 126 total grids assessed during fieldwork
- 5. GPS UXO assessment flag locations
- 6. Debrief and daily summary meeting with SUXOS and UXOQCS

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

- Continue UXO assessment on remaining grids
- GPS UXO assessment flag placements

Outstanding Issues:

• Slip, trip, and fall hazards prevalent in field (holes, vines around ankles/feet, stepping over/under dead vegetation). Areas cleared for transects have hazards associated with cut vegetation. Hazards more prevalent due to fast pace of grid clearance performed today. Will advise to maintain safety with respect to footing during upcoming fieldwork.

Corrective Actions:

• Revised UXO assessment approach to conform with description presented in Work Plan. UXO Technicians responsible for a linear 5 foot sweep area with 15 foot buffer in between UXO Technicians. Multiple sweeps of a single grid required to complete this approach.

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

Contract No.: 600431-OC (DPL 15-003) Project No.: 6301901 Daily Field Report No.: 3 Date: 07 December 2016 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot Site, Pina, Tinian, CNMI

Weather: <u>Partly Cloudy-Mostly Sunny</u>, Precipitation: <u>Passing Showers</u>, Temp: Min. <u>80 °F</u>, Max. <u>85 °F</u>, Wind: <u>Trade winds</u>, 10 mph from E/NE

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	10
Nigel Harman	UXO Technician II	Aerotek	10
James Hipp	UXO Technician I	Aerotek	10
Jonathan Clark	UXO Technician I	Aerotek	10

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting with emphasis on foot placement & avoidance of slip, trip, fall hazards
- UXO assessment completed in 100 ft x 100 ft grids as follows: E000, E100, E200, E300, E400 F000, F100, F200, F300, F400 G800, H800, I800, K800
- 4. 14 grids assessed today; cumulatively 58 out of 126 total grids assessed during fieldwork
- 5. GPS UXO assessment flag locations
- 6. Significant unknown located in Grid F400
- 7. Debrief and daily summary meeting with SUXOS and UXOQCS

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

- Continue UXO assessment on remaining grids
- GPS UXO assessment flag placements

Outstanding Issues:

• Grid naming convention inconsistent between EA and SUXOS. Review grid naming convention and rectify identity of grids cleared. Confusion stemmed from grid nodes identified on common fieldwork map, but grid identities not clearly defined. SUXOS indicated grids 000 through 800 required clearing while EA indicated grids 100 through 900 required clearing.

Corrective Actions:

• Meet with SUXOS and UXOQCS to rectify grid naming convention and identity of grids cleared.

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

Contract No.: 600431-OC (DPL 15-003) Project No.: 6301901 Daily Field Report No.: 4 Date: 08 December 2016 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot Site, Pina, Tinian, CNMI

Weather: <u>Mostly Sunny with Scattered Clouds</u>, Precipitation: <u>None</u>, Temp: Min. <u>80 °F</u>, Max. <u>85</u> °F, Wind: <u>Trade winds</u>, <u>15 to 20 mph from E/NE</u>

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	10
Nigel Harman	UXO Technician II	Aerotek	10
James Hipp	UXO Technician I	Aerotek	10
Jonathan Clark	UXO Technician I	Aerotek	10

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- UXO assessment completed in 100 ft x 100 ft grids as follows: G000, G100, G200, G300, G400 H000, H100, H200, H300, H400 I000, I100, J000, J100
- 4. 14 grids assessed today; cumulatively 72 out of 126 total grids assessed during fieldwork
- 5. GPS UXO assessment flag locations
- 6. Debrief and daily summary meeting with SUXOS and UXOQCS

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

- Continue UXO assessment on remaining grids
- GPS UXO assessment flag placements

Outstanding Issues:

• None

Corrective Actions:

• None

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

Contract No.: 600431-OC (DPL 15-003) Project No.: 6301901 Daily Field Report No.: 5 Date: 09 December 2016 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot Site, Pina, Tinian, CNMI

Weather: <u>Mostly Sunny</u>, Precipitation: <u>None</u>, Temp: Min. <u>80 °F</u>, Max. <u>85 °F</u>, Wind: <u>Trade</u> winds, 10 to 15 mph from <u>E/NE</u>

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	10
Nigel Harman	UXO Technician II	Aerotek	10
James Hipp	UXO Technician I	Aerotek	10
Jonathan Clark	UXO Technician I	Aerotek	10

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- UXO assessment completed in 100 ft x 100 ft grids as follows: G500, G600, G700, H500, H600, H700 I200, I300, I400, I500, I600, I700 J200, J300, J400, J500, J600, J700
- 4. Significant unknown munitions debris located in grid G500; consists of 500 pound bomb with shell breached (interior material weathered away), tail end buried under ground surface and unable to assess whether fuse still present
- 5. 18 grids assessed today; cumulatively 90 out of 126 total grids assessed during fieldwork
- 6. GPS UXO assessment flag locations
- 7. Debrief and daily summary meeting with SUXOS and UXOQCS

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

- Continue UXO assessment on remaining grids
- GPS UXO assessment flag placements

Outstanding Issues:

• None

Corrective Actions:

• None

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

Contract No.: 600431-OC (DPL 15-003) Project No.: 6301901 Daily Field Report No.: 6 Date: 10 December 2016 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot Site, Pina, Tinian, CNMI

Weather: <u>Mostly Sunny</u>, Precipitation: <u>Passing Showers</u>, Temp: Min. <u>80 °F</u>, Max. <u>85 °F</u>, Wind: <u>Trade winds</u>, <u>10 to 15 mph from E/NE</u>

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	10
Nigel Harman	UXO Technician II	Aerotek	10
James Hipp	UXO Technician I	Aerotek	10
Jonathan Clark	UXO Technician I	Aerotek	10

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- UXO assessment completed in 100 ft x 100 ft grids as follows: K000, K100, K200, K300, K400, K500, K600, K700, K800 L000, L100, L200, L300, L400, L500, L600, L700, L800
- 4. Material of Explosive Concern (MEC) located in grid L700; consists of intact 500 pound bomb with fuses removed
- 5. 18 grids assessed today; cumulatively 108 out of 126 total grids assessed during fieldwork
- 6. Additional UXO assessment completed in 120 foot wide strip in A and B grids
- 7. GPS UXO assessment flag locations
- 8. Debrief and daily summary meeting with SUXOS and UXOQCS
- 9. Julie Duay arrived on Tinian in afternoon

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

- Collection of multi-increment soil samples in Decision Units 1, 2, and 3
- GPS soil sample increment collection locations

Outstanding Issues:

• None

Corrective Actions:

• None

EA Engineering, Science and Technology, Inc., PBC

 Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

 Contract No.:
 600431-OC (DPL 15-003)

 Project No.:
 6301901

 Daily Field Report No.:
 7

 Date:
 11 December 2016

 Project Title & Location:
 Phase II Environmental Site Assessment; Masalog Ammunition Depot

 Site, Pina, Tinian, CNMI

Weather: <u>Sunny</u>, Precipitation: <u>None</u>, Temp: Min. <u>80 °F</u>, Max. <u>85 °F</u>, Wind: <u>Light trade winds</u>, <u>from E/NE</u>

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	10
Julie Duay	Field Assistant	EA Engineering	10
Roger Perkins	UXOQCS/Health & Safety	Aerotek	10
Shannon Linnane	UXO Technician II	Aerotek	5
Nigel Harman	UXO Technician II	Aerotek	5
James Hipp	UXO Technician I	Aerotek	5
Jonathan Clark	UXO Technician I	Aerotek	5

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- 3. Collect multi-increment soil samples consisting of 30 increments from each of three decision units 1, 2, and 3
- 4. GPS soil sample increment locations
- 5. Debrief and daily summary meeting with Julie

Equipment Onsite:

- Two Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

Next Anticipated Work:

- Continue UXO assessment on remaining grids
- Continue collection of multi-increment soil samples in Decision Units 4 and 5
- GPS soil sample increment collection locations

Outstanding Issues:

• None

Corrective Actions:

• None

For questions regarding this daily report please contact Michael Kelley at (808) 589-1455 x 111 (office) or (808) 679-2976 (mobile).

EA Engineering, Science and Technology, Inc., PBC

Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI Contract No.: 600431-OC (DPL 15-003) Project No.: 6301901 Daily Field Report No.: 8 Date: 12 December 2016 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot

Site, Pina, Tinian, CNMI

Weather: <u>Cloudy</u>, Precipitation: <u>Steady rain with periods of downpours</u>, Temp: Min. <u>80 °F</u>, Max. 85 °F, Wind: None

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	8
Julie Duay	Field Assistant	EA Engineering	8
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	8
Roger Perkins	UXOQCS/Health & Safety	Aerotek	8
Shannon Linnane	UXO Technician II	Aerotek	8
Nigel Harman	UXO Technician II	Aerotek	8
James Hipp	UXO Technician I	Aerotek	8
Jonathan Clark	UXO Technician I	Aerotek	8

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- 3. UXO assessment completed in 100 ft x 100 ft grids as follows: M000, M100, M200, M300, M400, M500, M600, M700, M800 N000, N100, N200, N300, N400, N500, N600, N700, N800
- 4. 18 grids assessed today; cumulatively 126 out of 126 total grids assessed during fieldwork
- 5. Collect multi-increment soil samples consisting of 30 increments from each of two decision units 4 and 5, duplicate and triplicate samples collected from decision unit 5 and submitted blind to laboratory
- 6. GPS soil sample increment locations
- 7. Debrief and daily summary meeting with SUXOS and UXOQCS

Equipment Onsite:

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver •

Next Anticipated Work:

- Prepare for client visit to site and demonstration of field activities
- GPS UXO assessment flag placements

Outstanding Issues:

• None

Corrective Actions:

• None

For questions regarding this daily report please contact Michael Kelley at (808) 589-1455 x 111 (office) or (808) 679-2976 (mobile).

EA Engineering, Science and Technology, Inc., PBC

 Phase II Environmental Site Assessment MASALOG AMMUNITION DEPOT SITE, PINA, TINIAN, CNMI

 Contract No.:
 600431-OC (DPL 15-003)

 Project No.:
 6301901

 Daily Field Report No.:
 9

 Date:
 13 December 2016

 Project Title & Location: Phase II Environmental Site Assessment; Masalog Ammunition Depot

 Site, Pina, Tinian, CNMI

Weather: <u>Cloudy</u>, Precipitation: <u>Mostly sunny with passing clouds</u>, Temp: Min. <u>80 °F</u>, Max. <u>85 °F</u>, Wind: <u>None</u>

NAME	FUNCTION	COMPANY	FIELD HOURS
Michael Kelley	Field Oversight	EA Engineering	8
Julie Duay	Field Assistant	EA Engineering	8
Trevor Barlow	SUXOS/Field Team Lead	Aerotek	8
Roger Perkins	UXOQCS/Health & Safety	Aerotek	8
Shannon Linnane	UXO Technician II	Aerotek	8
Nigel Harman	UXO Technician II	Aerotek	8
James Hipp	UXO Technician I	Aerotek	8
Jonathan Clark	UXO Technician I	Aerotek	8

NAMES OF PERSONNEL ON SITE

Daily Activities:

- 1. Safety briefing and review planned field activities
- 2. Tailgate safety meeting
- 3. GPS UXO assessment flag locations
- 4. Client visit for demonstration and filming of field activities
- 5. Debrief and daily summary meeting with SUXOS and UXOQCS

Equipment Onsite:

- Six Schonstedt GA-52Cx metal detectors
- Global Positioning System (GPS) receiver

Next Anticipated Work:

• Demobilize and pack equipment for end of project

Outstanding Issues:

• None

Corrective Actions:

• None

For questions regarding this daily report please contact Michael Kelley at (808) 589-1455 x 111 (office) or (808) 679-2976 (mobile).

Field Logbook

This page intentionally left blank

CNME DPL TINIAN - MASALOG AMMUNITION DEPOT PINA, TINIAN, CNME

Forestry Suppliers, Inc. 1-800-647-5368 #49352 Field Book

1

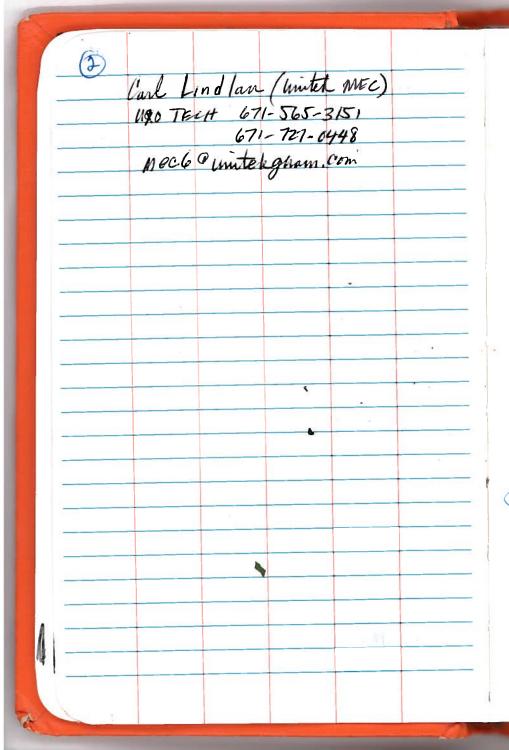
Book 1

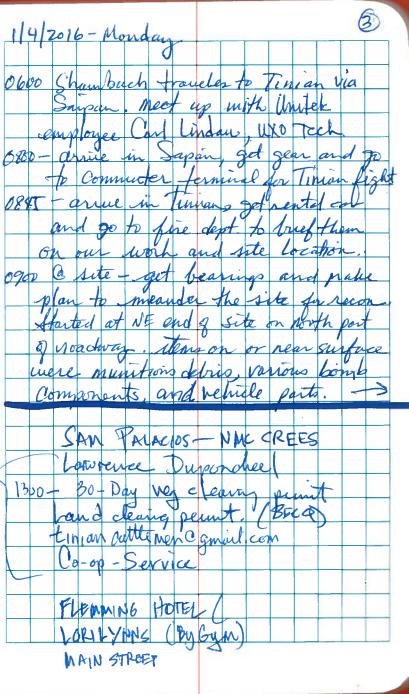
DE STAKES FOR CROSS-SECTIONING THE TANK STR. COLORS 5HAMBACH 671-727-60 10.50 12 Mt. \$310. 3 and 157. the The second second ALC: NO. o ta .8 .9 ... 1.4 0 25 1 2 4.4 3 55 7.0 4 85 5 10.4 6 41.5 7 13.4 8 433-9245 14.5 9 15. 10 17.1 11 12 19. 20.1 13 TIMAN DPL 14 2 16 15 23. 16 25 roing @dpl.gov.mp 250 17 17 28 18 -29 19 19 20 31.5 3 32) 21 23 34.5 22 = 359 23 3 374 24 28 25 38.6 38.7 389 38.1 38.3 38.4 \$7.5 \$7.7 S7.8 38.0 3 26 40.1 40.2 46.4 39.8 39.9 39.5 39.5 39.6 28.0 39.2 28 27 41.7 4:.9 41.4 41.6 41.3 05 40.8 41.0 41.1 27 40.7 28 43.1 43.2 43.4 42.8 42.9 25 42.6 3 62.0 02 23 29 44.7 44.9 44.4 44.6 44.9 44.1 44,3 65 6.7 43.8 29 30 46.2 46.4 45.6 45.8 45.9 46.1 45.3 45.5 30 45.0 45.2 31 47.9 47.6 47.7 47.9 47.1 47.3 47.4 45.5 21 655 46.7 32 49.2 49.4 48.5 48.6 48.8 48.9 49.1 43.3 22 -48.2 33 50.4 50.6 50.7 50.9 6.8 50.0 50.1 50.3 49.5 43.7 33 52.1 52.2 52.4 34 51.8 51.9 51.3 51.5 51.6 51.2 36 51.0 53.6 5**3**.7 53.9 35 53.3 53.4 53.0 53.1 52.7 52.8 35 \$2.5 38 54.9 55.1 55.2 55.4 54.8 54.3 54.5 54.6 35 54.0 54.2 37 56.6 56.7 56.9 58.3 56.4 56.0 56.1 565 55.7 55.8 37 38 58.4 57.9 58.1 58.2 57.8 52 57.3 57.5 57.8 38 57.0 39 59.9 59.7 59.4 59.6 59.0 59.1 59.3 58.7 58.B 39 58.5 40 61.4 61.2 60.3 60.5 60.6 60.8 60.9 61.1 40 60.0 60.2

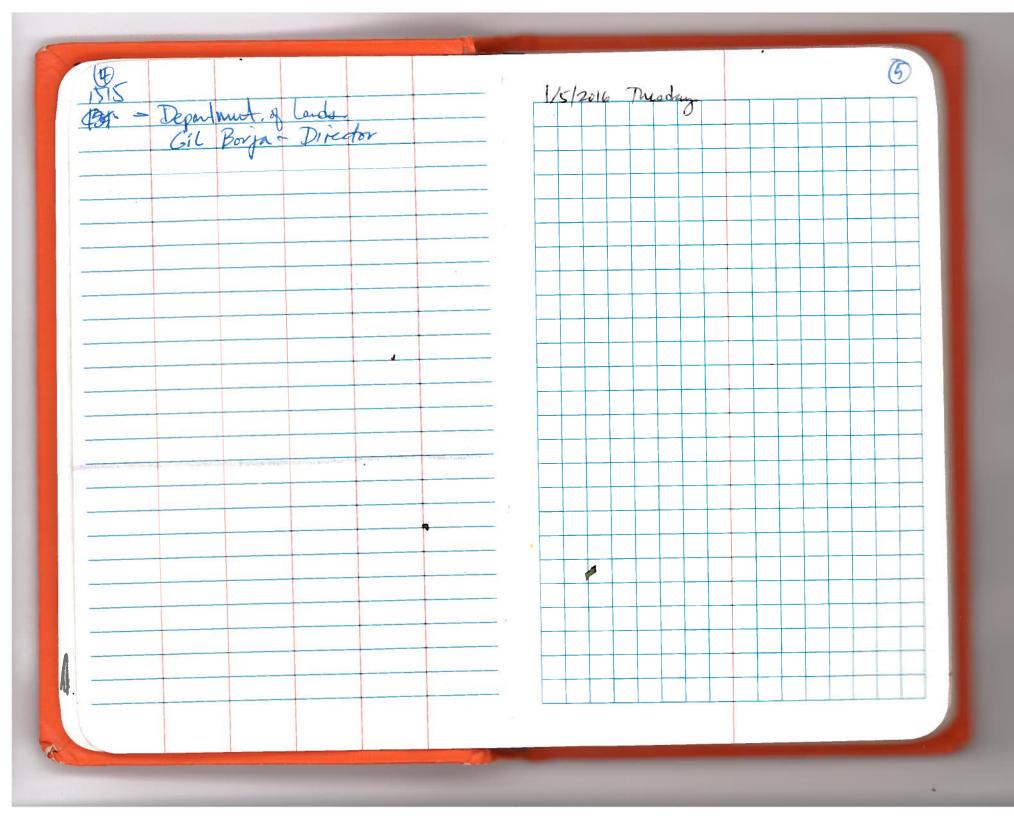
TINIAN, MASALOGAMMUNITION DEPOT, PINA.

CNMI Dept. of Public LANDS CONTRACT

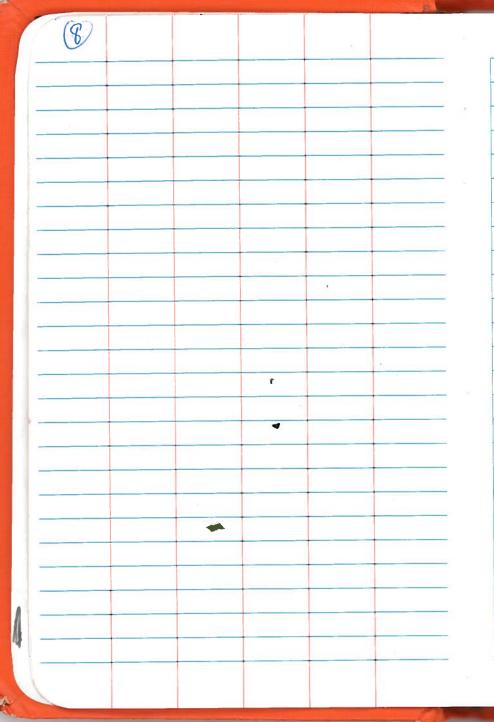
Poc: RACHEL Roque

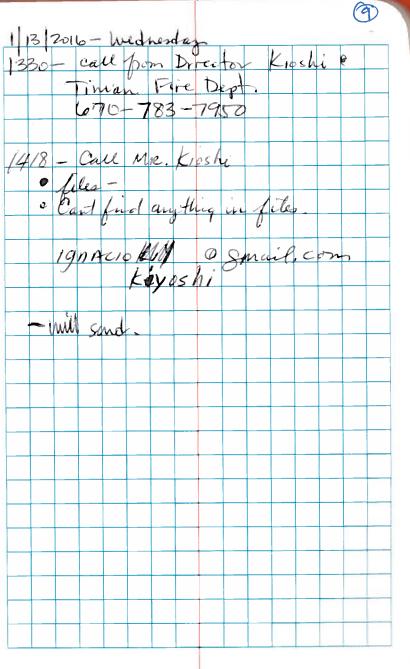

TIM LANG, TRL 670-287-6403 (M).

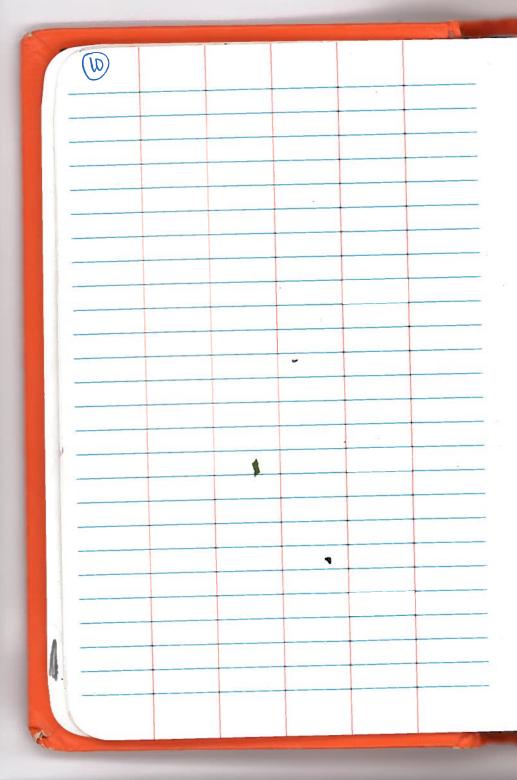

> The paper in this book is made of 50% high grade rag stock with a WATER RESISTING surface sizing.

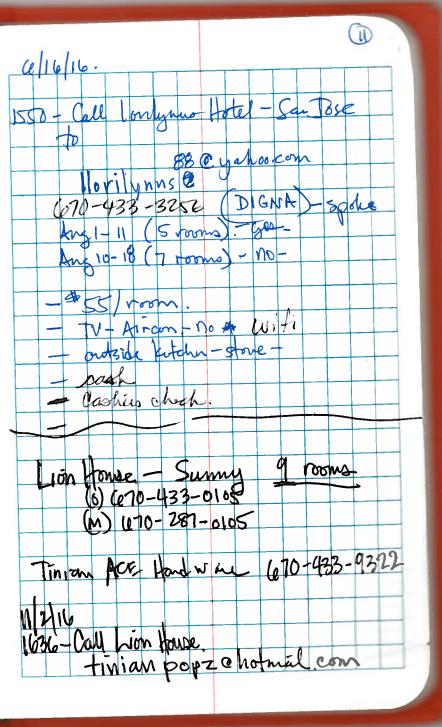

CONTENTS PAGE NO. REFERENCE DATE Mayor - Tinian De Patrick San Nicolas Erme Happineder (filian 670-785-8764 Foel Untulan Director * Flemming Hotel Debra Flemming. ALA tourific, tIMIAN @ gmuil.com. (270-286-0405 Bon Farrell-670-433-3082

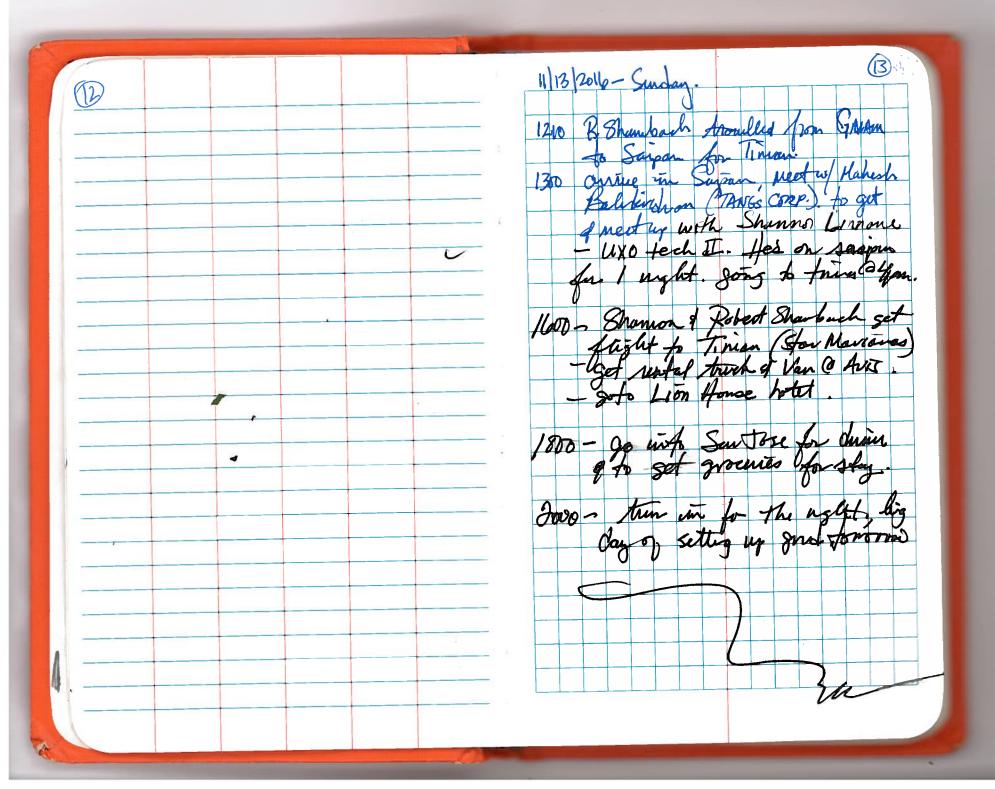
N.

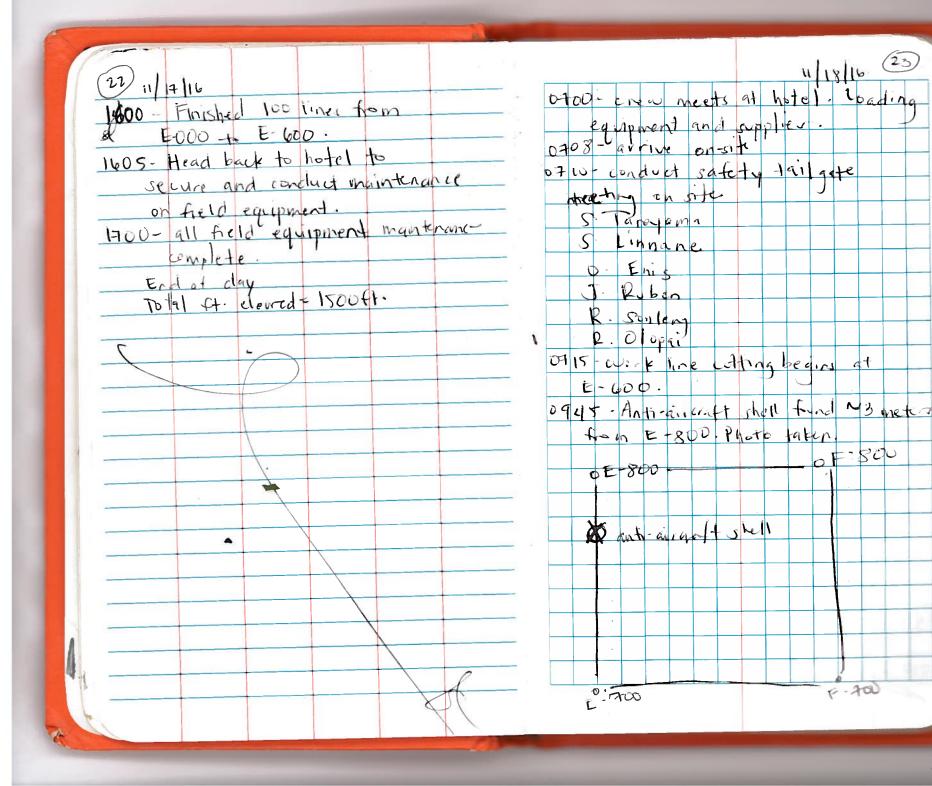

T Lori Lynn's Hotel, San Jose Tumas 670-433-3256 TIMIAN DPS (Pept Public Sofety - Police offer 670 783-5379 Con 423 - 9222 (Front Josk) Kboyja 13185 @ quail.con CHEF OF TIMIAN DPS Director 10-783-8083 (m) Marines were a site 1-2 yrs Ago cane to Survey the site Are 0 Masilog Caging - Bridge Capital 783-0407 (m). - Ary later this week

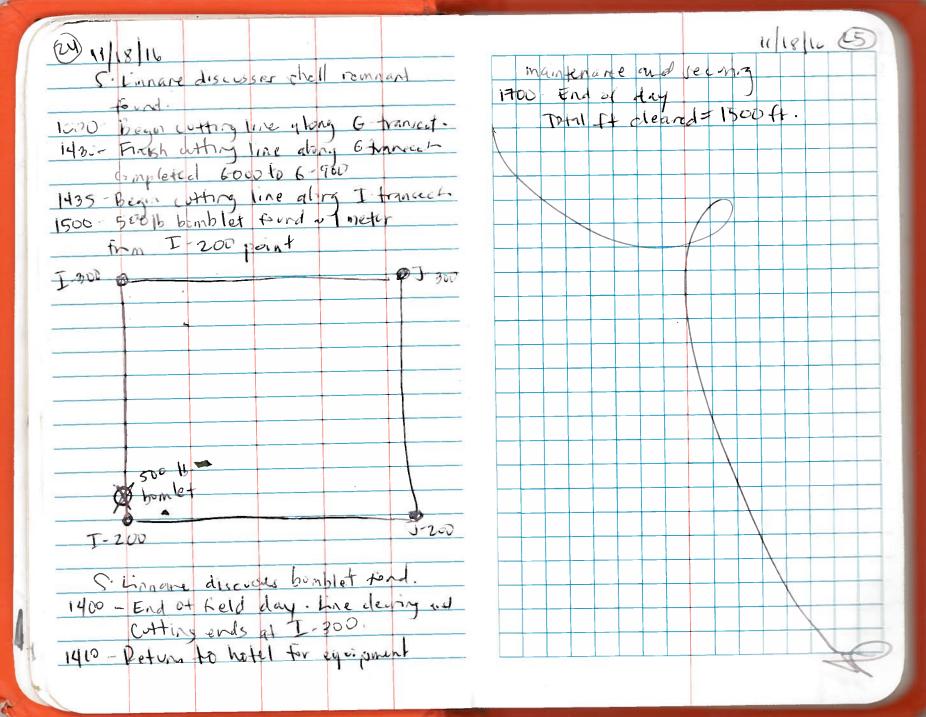






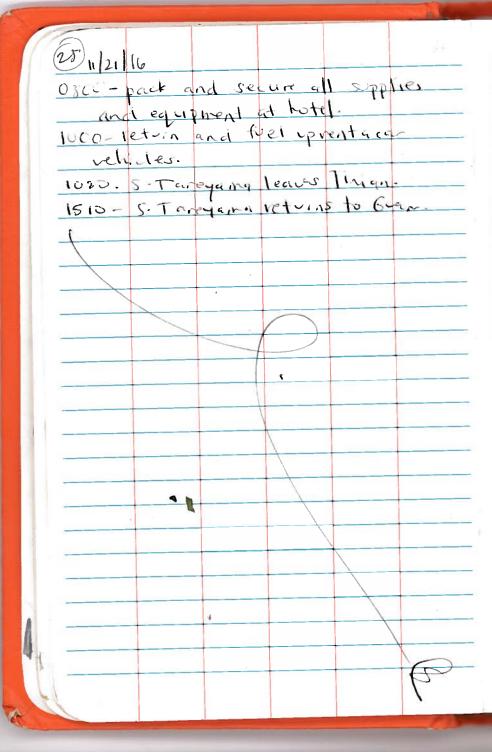


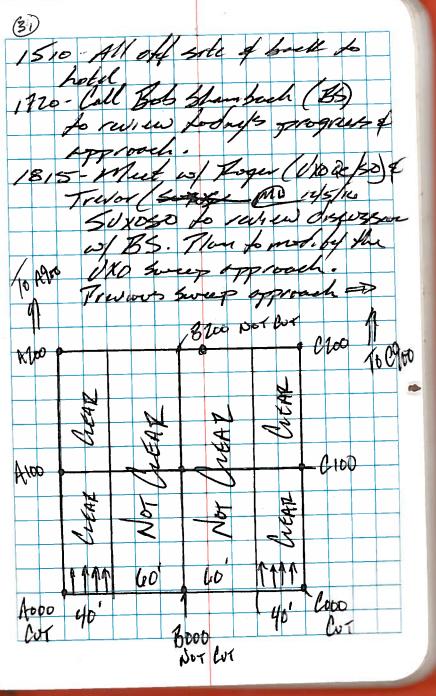

12/14/16- Monday. (14) 12 1600 Shanbuch to Anpat to set Tange Corp. employees - 4 pe 1730 bach e. Lion House, 0730 Bob+ Shannon go for breakfast e 0820 go to Historic Preservation Office (HPO) to let them langer main 08% go to fistoric Preservation Office (140) to let them know were on site, met n/Gilbert Borga 9 Motie linona. 0820 Styp @ Police 9XRT to let them Know we will be proste 0865 @ ACE Hordware to get supplies. 1000-Annie on site & sit up Grid, Bhow Sherron around. 1045 malk into site on for line "A" South to point Ando find point & Alo A-100, A-200 hale A-300, B-000 & C-000. - Continue north on line A up to A-700 ponst. 1250 come oust of site and go for lunch C JC Cafe. 1345 trach C site meet up in forelet porta-porty: 1440 - go to east site & find & mult 0-000, 0-100, 0-200, and NOOD. 1530 gg site.


11/15/16 0800 Crew on site to cett veg. # survey line C site. Robert Showbach (EM) Shamm luinone (Acrostele) ORI ENIS (TANGS) RAY OLOPAT (TANGS) RICKY SOULENG (TANGS) ISSE RUBEN (TANGS). Theitgate HES meeting. 830 funch up line A More carto sinching line C pm C-000 to CI900 then chick on NE Comer of sunged com. 1200 take finah 1/1 100 Jue a sote go back of Hote - pick up provisions for used. 1300 back to with on live "C" No issue to day - show buch gets more water & ja in San Pose. Ó M

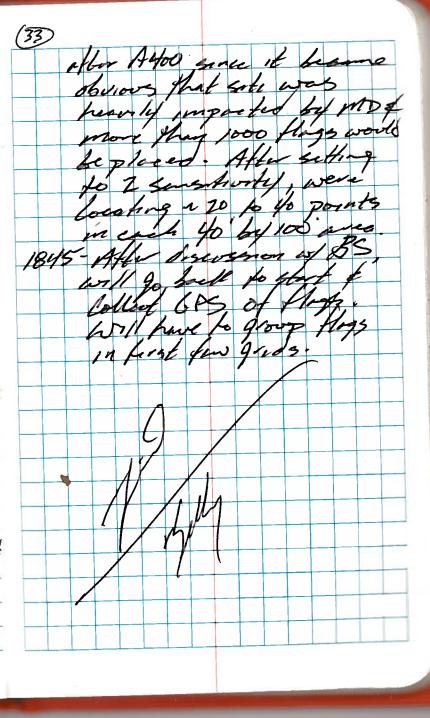
11/10/16 Wednesday 0700 crew meets of I 6715 leave for site. 0730 arrive &t site. Robert Showbach Shannon Lunnane (Derstel) ORI ENIS (tango) PAY OLOPAI (Tange) Ricky Souleing (James) Jesse Ruben (Tango) Tailate Has needing hydrate chech geor, gas up chan SANS. Plan today is to finish "C" (ine 100 line pour D-100 to 0-100 0740 Start "C" Line North. 0845 C' Cleop pt, we cut west to ALOOD to confirm 200 H 9 - Mark 2 old roads as we proceed. 0900 Jeel UNTRUM, Director DPW 200 Hake wich

11/16/16 bach into fine a cut - 100 - 300 Af to Line 100 to \$-100. Crew Juich Line 100 To B-11 Desas site for hotel. 1645 - Shambuch goes to Tinion Auger pick up Mahash Bolakushan lange Corportion. the Mak gote when his workers one waking HE 1745 LAND Makesh & Amont. 1830- Showon & Bet have du with Doel Unterlan (DAN D plan tomorrow is to get the good points sot @ 0-000, 0-100 0-200. then cut 100 ft lines SE to E-000, G-000, I-000, E-000, H-000 then but line E to 900 Ft. 1,800 At today maheel


II/17/16 Thursday Crew meets & ffite/. Crew for sete annie to site. P. Shembach S. Linnand 1) Itus - Thundan OTO 1116 - CNMI DIV. of fith & nuldlife. Sferre Mullin, wildlife Bodoyis Kika Sablan, wildlife Tech. 0710 0720 1359 - find remmant 500-16 pouls N 25 At North form of E-ass Grid pt. foole photo. - Shannon linnane shows crew t asplaine dangues & what to ward for. O Enis R. OLOPAI R. Souleng J. Ruben 0730 trilgde HtS. Brief. Cour chan Son zafety, slips, trip fall, Bees & histograd hayands, Jall sign daty sheet, FIDO 5100 0920 Showbach leaves site to get Sheeka Toreyouna @ Arron 1045 Shambarh & Sheeles on site. CNMI Fish & Wildlife Stopped by site 5 min Ago Cooling for pennt, · ~ 00 E-000


20 11 19/16 0700 - Crew meets at hotel to logel Foor Crew ment field equipment 0710-Satety trilgate meeting on-site <u>P. Tareyama</u> <u>R. Son long</u> <u>Olimpare</u> <u>J. Ruben</u> O. Enis R. Olopai 0715- Continue cutting line + I-300 1130 - complete line inting along I - transcol 1135 - take lunch 1205 - Begin cutting line along K-trancet. 1600 - complete within along K-trancect. 1807 - Head back to hotel to secur and conduct equipment maintenare 1700 - Endor day. All equipment scened TOTAL line wit = 1500 ft.

11/20/16 (27) 2700- cnew meetr " 101d Field egipment 0715 - Safety tailget weeting on-site S. Tareyema J. Rubeh R. Sonley O. Enix R. Olopai 0720 - Begin etting ling along Mtransect 11417 - complete ating along Untrancech 1150-S. Tareyong, J. Ruben R. Olopau, and O. Ens unduct walk though all 900 ft at lines to locater brins and old roads. Cier map). 12415 Head back to hotel to serve equipment and perfim maintenence 1400 End of day total live cut = 900A. 1730 - Drop field crew to airport



EÐ 12/5/14 0600 - Srefely to Ø 0455-Constite 0710-0810 - At A 0830face Sweep A000 + 780°F. NE other miscellenents 0920 - MSR back on so 0925 Crow unergas from ingle onto 1000. Finished A 000 to A100. Bright for Ho Plan to Continue to A7.00 0953- MSK rend map Wlong

(33) 0453 Lout - Craw hed moved from A000 to 1300 next to road. 0955 - foreted unknown but possible Mic new A400. Theto & Hig & GRS. Object is Forches round & - 1" profering from Sorfoce. 1013 - Nev A 500 another 7" hameter projectile base plate. Non Mec. 1026 - Por fable forlet fronk fill of them solution 1638 - Porta forlet forch off site 1103 - Fuch and of grids @ A 900. 1117 Book & Jubacher for break & water & forch. 1135 Brill @ fuld site. 1245 - Move to Cooo fine UNO even Stwn Coost Bood to work a 40 ff Swath to the NW to B400 \$ C900. 1500 - Finish botwon 5100 \$ (900 50 all of VUI puesbeen cliand 2/3 of the are fodel

37 1815 Cont - Will shange approach to have each parson 1007. for 5 It Swath w/ 15 ft Sore there to Area not cleared bewy to be 1 lage no then elens other 50 Heco Marina 1000 the lovers his Justwery the on 3 which fool 408 1/00 pointes by 100'.

30 12/1/16 MARION MEC Son Samber lon 7. DGDO batily brie & Nigel worth wor all oren startes Sounded by Coop, Does, C100 \$ D100 0630 leave for Harman / NHI 0715 - MJ move to Acod & A method to Collect 65. 0720 - At A000. Bern Counted in arm of Aroo 0775 . Putting Leaved thowards. Wenther 15 780°F. frade windly @ 15 to To mph from publy cloudy is pussing EINE 4hours 0736 GRS = MG. DOOI has It anomalics W/ 19 40 H by 40 H we 3559B9.10 E, Photo #1 looking N from 685 1 41

(35) More to new alor 0743 6PS trans 0745-23 50' 4141 684= 126-002 455674.00 355988.11 E Photo #3 woking New Hore 6P5 Photo #4 faken looking wes Na of #3 0750. Those #5 Jakn look. -1 5W ng Blot ling hoto # le looking South How Those 5 41 1285 Lever w/ bPS. 800 - Trouble Lecore points louit stay saver 685 menny. Trouble Shoot forthe Call BS to review 695 Setup 1820 - Call w/ BS. Febrot 6PS

3 to fre le dorrect problem 6PS well record location on mamory but will not plot it on the map 0825-Uxa crew starting to 1 at road. They have deared 41, ds CO00 , 7000, E006 48 C100 P100, E100 a I guds. They are stating at Cloo lined up bloom Bloo # working toward NE Ston lines Cioo & DIOD. 0832-675 Lehrend eren. 685: 126-003 withun grid described above. Flag of Subsurface hit 1656760 40N 355947.82E. 0835. 685 loution w/ Exportace hat 695 = 126 - 004 1456767.71 N 365913 92 E 0837 - 6PS subsorface hat 685-126-009 1456759.19 N 355933.37 C

0840 - 2 Subserfact Alogs - 4 6PS-126-006 1656770.50 N 355996.80 E 0843-5 Hags w/ m 101 105 of each other 695=126-007 1656780.00 N 355996.11E 0816 - Barm of 5 flags withen bern - Subsurface 6RS -126-008 1656786.50 N 365005.55E 0849 - Brekends of your above. Near Flag F300. 6P5=126-009 1656794,97 N 356000.50 E. There are 5 flags conning Anear along booksed of Ler M

38 0851 - Corner of same bern 2 flags of subsurface 685=126-DTD 1656788.90 N 355965. 72E 0853 - Subsurface flog 695=126-011 1656788 86 2 355984.018 0855 - Subscripte monaly 6PS= 126-012 165678219N 355 181.46 E 0858 - 8 subsurface along Cline linear of w/in 20 ft of when other in cut 015=126-13 16510:772.16 N 355943. 90 E. Thoto # I looking AW along Cent line of many flogs 0102 - Small mound w/ 9 Args subbut face w/in 30 110:05

(39) 695=126-014 1456774.69 N 355937.57E 0405- 5 flags along bern alon zo Ad each other 1656786.07 N 355955.82E 0907 - on nerde of some bern Leven Subscripter Higs 695-126-016 1656792.60 N 355954.512 Flags w/in 30' radius 0910 - South Ende of So w/ le subsurface w/, u 30 ft rodas 685= 126-017 1456790.94 N 14 MR 755 355965.35E 0912 - One subser face flag 6P5-126-018 1656803.35 N 355974.70 8

0915 - 2 flogs ~ 3 ft mont home face 695-126-09 1656808.05 N 355970. ILE 0917 - Subsurface flag to E of bern 685-126-020 1656808.93N 355964. 36 E 0927 - Sevon flages whin a line on cost side of bern w/17 40 of each other of one flog on west Side of berm 10' away. 6P5 =126-021 1656799.97N 355950.94E. 0940 - Those call of Jul In EA Guan The inductors that only one file is needed to collect dute for locations. At each flog, schet point location, and bomprents let count to 30 on 615 for

accoracy. After accuracy is with the then select done to finish individual point. 1006 - mk & NH back on Cam line Start collecting date Atter the flag hars been 685, will use sharpie to mark Hag al black mark indicate data K falling over N15- MT Take bruck in place & hydraft & have lin 1200 - MSK & TH book to GPS 1410 - Break & Mule. Ho & ack. NH an 12/4 1430- MJH & Ft to Uxo Crew-@ defutis-1515-11×0 CV Lauren nDock 1550 - Thall 12 with to action AUIS - Rogin 1440- Fait Hop for gals ΜŴ

rigort. Then be odging Shower of clun 1745 - Verve for dinn 1850 - Breth Co lo Foger & Trever meet 1905 - MJK to review dreps progres il to Crew cleared all 9 an in the C & D gud lines from E 500 up to E 900. Discovered the of program, which geens really foot of the amount of coverage that to being cliente of thenstadtes inducations he thinks that earing more than the service and or more then about was It in into 2 mail Iscor 5 1 Fall TAP and vines 70se try harde beleval falls were obser today The sharp shells parting up from out tracks

43 Theolor & Loger 1940-955 7010program of 15 154 on voiceme 2015 2 Ladien chrad from wor Low forday Cher Brann 2/20mylian plogues of overn plor it & 1550000

(114) 12/7/14 0600 - Safety meeting a lodger Fricharize health ; Stell, Tripping harandy was stings & heat illness 0635 Mit & Shamon lumane (SL) at A line cut to Continue collating 673 data foror Agoo, 8745- Bathroom & hydrahom briak. 0800 - Back to work 0909- At Agoo. Here back form to Cut line & Coop. 1010 - Bret & road & Volucle. Hydrate & Small. 1015 - MJK stong on R Ang tinger by onknown insect. 1025 Bouk to GPS. Move from road up Cast forward 6900. 1135 - Breek to white of break 1220 - Buck up & cut line P 1318 - Buck & deluge offer 685 to 's of road. Change but wins

in 695. Algate. 1502 -Finished GPS for dog. 1480 locations Collectic. 1X0 Evens 156 - Trek equinback to lodgi 2000 - What as Rogen & Treva to review for marias 1x0 crew cleared Eloc DESOD FIDD DF500, 6900, 1900 I 900 5100 today. Triscossad that 127 × 100 × 100 grich are Shown on Figure 3 of work plan, but taxt worates the are 150 grids to Alar total It appears there should be in additional low of quices for the ogo line and also East of Poor -> P900 Lone. Will clarity of BS forcorrow Hovever the have docen not show Dus lovering the extra rows discussed about, Also dreased that the crew cleared 4 more

46 100'x 100' gr, og Jugers my Han was prav. reported. The 4 grids were Floo, F100, F800, F920 GRID IN Conversion USED By Uxo Care Z 000 1AP AIOU 61.0 AIP 600 A100 A000 8000 Toring 685 date collection, tooks like grid ATIOD Jos Swept revoss where 100 x 100 while no flogg were marked in grid BIOD. Will resures grid BIOD at end of job

(47) time permits. Uxo crew # problem long the 16 aug will work thing in the try to Correct error E& C cut lines from boo As 900 formorrow. See pages 48 \$ 49 for grid clearance sommary Also redien H& required to Complete Project on fime, 1015 The w/ UXO & H&G inceting 2055- Tone w/ writing notes of

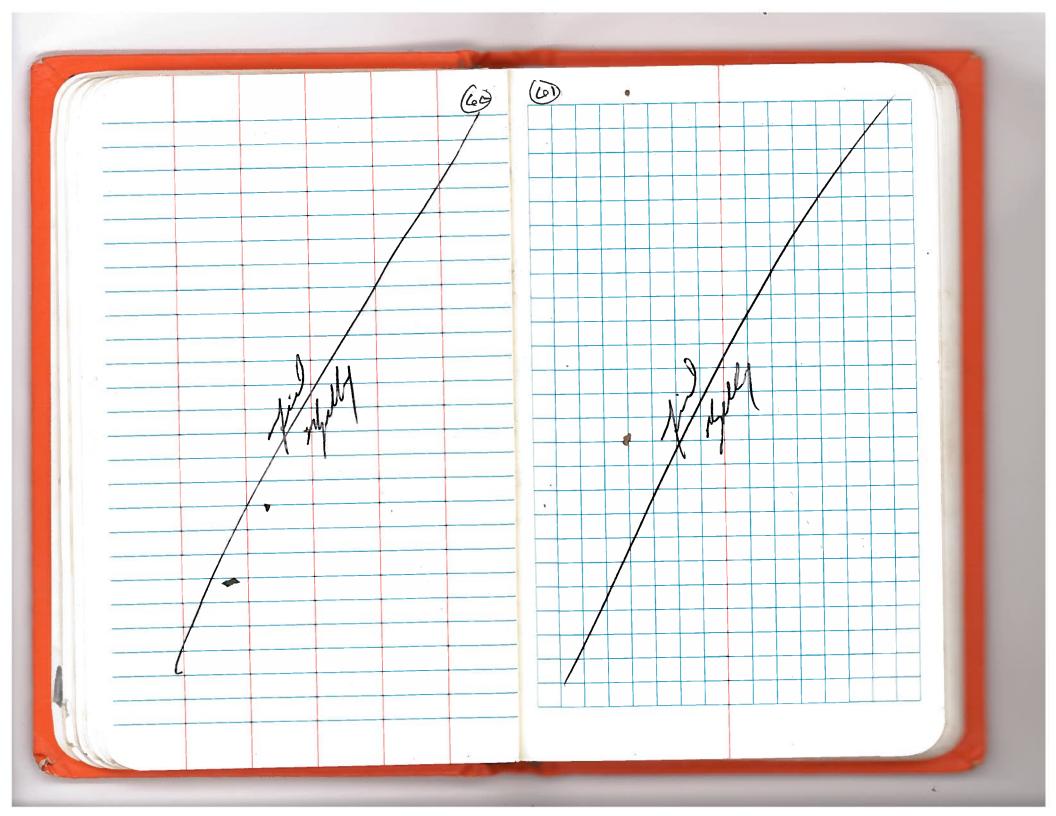
149 6210 GEARANCE Sommary LEIDS GEATER Acco (m) A100, A200, A300, A400, A500, ALEOD ATOO, ABOD, Agoe Bioo, 3200, 3300, 3400, 3500, 3600, 3700 3800, 3900, 3000 18) Cocon (100, C300, C400, C500, CLeco C100, C200, C300, C400, C500, CLeco C700, C800, E400, D100, D200, D300 D400, D500, D600, D700 FLOO, FTOD, FBOD, FADO, FSOD E000 P 169 E100, E100, E300, E400, E500 (m) 2/1/11/11/11/11 6800, H800, J800, F400, F500 (M) 6900, H900, 5900, K900, F100 6800, H800, J800, K800 (M) Timps 6000, 6100, 6200, 6300, 6400 1/18/16 HOOD, HIDD, HZOD, HZOD, H400 1000, I100, J000, J 00 (14) grids CONTINUED ON PACE 49

(F)		
TATE	62105 GEARED	
FRIDAY	6500, 6600, 6700	
12/9/16	H500, H600, H700	
(18)	IZ00, I300, I400, I500,	
GRIDS	IGOD, I TOO	
	5700 5300 5400, 5500,	
1. (1- 11)	J600, J700 KODO, K100 K200, K300, K	lloo
Julio Dia	4500, 14 Loso, 14700, 14800	<u> </u>
1 (1B)	Loco, 4100, 1200, 1300 Lite	XO
(1B) [-91,03	1500,1600 LT00 L800	
y total	RUS 120 FT STRIP IN C	
grint a.	A&BGZIDS	
Mannel		
12/12/14	Moo Mioo MZOO MZOO M4	00
	NOOD, NICO, NZOO, NBOO NOOD, NICO, NZOO, NBOO, NY	60
(18)	N500, N600, N700, N800	
- 1109		
	120 CRIDS ComPLETE	-
	_	

30 33 12/2/1Le Olevor Marting @ lodging to reliend deso- Crew out in field. Furen ty your in Keld. 100 prew to resurves grig B100 press on ralice of lata. Then they will work the & cut line. Note: The will reriew gred node to To be sure accorate before proceeding t HA to collect 695 Labor weig E, & & b but lines glansin He clear E& F grids. Weather Clear, Scattered clouds, Free, 780°F, Horned. 0645 - have schecker of into field. 0940 - Back to debuter for small of H2O. 0948 - Bob Shembach on 1030- Buck to work

1100 - Bout to velaches 1250 - MIK & NA back to GPS Note: Bis off site + 1215. 1415 - Frack to vehalle on bote wh we were out 615. Bob w cxa Surcep Com 1525 - Bob off Site s back a Valueles 1540 - Uxo Cru Pock quipment of back to lodging Nore: Thomas Acam Bob revences the Astal # of 100 × 100 grids to be cliered as noted last night on pige 45 127 19 150. Bob maicated the 177 Arids shown on Figure & way Porrue 4 incurred 30 acres 50 Arido 12 laval to 34 deres scorped rate of progres clean-9 grides & Postability working on Sunday for Santyling or 685 work.

UPPATED GRID NAMINE CONVENTION FOR UXO CLEATEANCE (52) 63 2015 - Mut of Poger & Trivor te review today's progress. When reviewore total # & identification of grids Clearce, the grid ID shown on page the 13 not correct. See page 53 for correct. Gid naming convention. At end of today, 12 out of 127 grids cleared leaving 55 ander common to be Mro. CLOD 100 64-0 GRIP \$100 A100 55 grids remaining to be cleared. 6PS loca hours for 7 AND 6100 marked surface or subsurface BIDD detution's are lateling up 1-1-12 to production of UXD Sweep. 154.0 Aboo BOOD Provo significant unknown Surface defections have ADO been recorded in 6210 A400 Cobo BOOD Provide field progress updete to bob the progress updete 130 - Jone for day. \$ F400.


(FF) 12/9/16 0600 Sweery Muting Farmen Stip, trip, fall presands, both from orners of holes in the ground. Emphage He obyo placement. 0640 placement. 0740- In field man I cut long Additional Safety bores 0730 - Uxo Oren working between 6 \$ I but lives front 500 to 900. 6PS w Sharron & working blum 6 \$ I bot lines hom 200 to 900. 1100 - Busk to repute 1140 - Meet as Trevo to review progress of Hof S They are progress of Well and should Domplete ke to 18 grids 1150- MK & SL back in field LPS from I lot to Kart 1520- Buck to valuely & gack upor provent,

B 1000 - Meet of Traver to rare fordays. programs Uxo crew cher No syn Acant H& S issues Surce P cleared 18 011ds today See page 44 for list. +> One significant only located on grid 6500. Tan end of 500 16 bond under round surface. May be but very onlikely. Most lakely does not resent explos to Bob! 1145-Tome

(30) 12/10/Ke 0600- bately meeting @ lodging 0645- Crew infield & proper UNO Sweep & GPS 685 will stort bown I 400 & K 400 to have the I & J grids Uxo even starting bown. Kooo & Mooo and work formard the Boo guds. 140 1800 - Back to vehicle for 15 mostly sonny of possing showers 780 4 CAIM w/ no finde wind. 1170 - Brek to Voluches, break 1210 - Buck to work OPS locations. 12to - UNO even back C defuction forgort they located & plagged intert, 500 15 Somb And LBOO. All bob to report of wall woor Segarate crus working

(57) working on the earst tode Site . of thes Score BET TOZDAN harge of 20 for these from ROBERT JOZDAN POBATE JEDAN (CMALL. Com 670 483 4831. 1300 - Buck to 685 John tion. Soc - Crew boat @ Viendes. Mik & Roger to arrow Le Pack op Jolie (EA)

mw 12/10 59) 58 heal Restan Harstance of Soil Santaling & studes not at stop C hardware store 1535 Al police station to MEC next, Explorance Fusponse Tu Station Police & XIT hoties for AG/14 from decisi des mits (DUS). Therew Safet PLODI for exercia from & sample us no Collition 2100 - Muting w/ Suxas and It & Stone Common " fince meeting and sitie, w/ Jole 2125 - Finish me ting tall bimma Write no MIL move ging. 1600 to recommodate Thic 2200 unger upstoring form. She to begin 1000 aporte on projut progras 2010 - Muting w/ Suyos mo health of Sufety. Review today's UND Sweep progress see page 49 for grily deried.

12/11/14 CI 0400. Satet of meeting Clodging, Pripare exportant & supplies to full site & prey 0700 ovt Weather 13 Sonny no Clouds 780°F, trade windy is to 15. Mph from E/NE Finice UXO sweep & Weavafron procedure and # of presement for each The to be follected TUI. T/UL longists of + A' & B gill's plus stars 1070 of Cariss. the is Goal for alberting morements M 19 for have one meremant erch 100 × 100 AVID from ADD to ABOD, Brook BEDD, me Coo to (800 (1 water to 2 of (grids). Increment brachory will selected moderaly from restrictioner on deschafton (trus) and avoiding digging right

(63) GUA I.E AT N not alian sucher below the mandad to crew using nove to the Associable Steenless soon to scrope side Red osl grain to bran four or bottom of hole that in foo & BOD grids, soil before hitting

(64) Confinuous hard Coral. Depth in some locations 15 14strated by Coval Trico Serviral locations of same result. Therefore, Collected Some mercimentes from the Sort that was waylable. Cenerally below the 700, andy the thickness of the soil profile increases din dog to 1 H 1105 - Finish 30 increments in Dool. ID= MAD - DUOI Used 6P3 to locate each of the 30 increments Sample consists of I large I plock bag w/ I to 3 16's of Soil plus 1x 4 of amber glasses as for while phosphoras plus 1'x 4 of clear jar for porstore Contered Sort in Fiplock to be analyzed for Metals and explosives

65 1115 - Break for lunch & H,O 110 avoidance crew ning (Shannon of Jer satch and Nigel & John 1200 -Begn My Sampling in TOZ. Sune procedure I be followed for all This to be sampled norring MA was 14" film pot Collecting Soul increments whole JD about 6P3 and inting UXO Crew to it Cocation, However TO 13 on the site for vist time & not oriented well which slowed prograss In afternoon, MA 613 directing Ixo grow to next reaction ashile ID was leiting incrementes, Restled much faster prograss 1330 - Finish 30 increments in DUZZ ID= MAD DUOZ. Sume # Sumple Confairing

Celi Sanglus fride bagges ill opplied. IE-D Sande Coder in vehicle Costody of Roger (H why locked very 1405 - Start Sampling in DU03. 1420 Note less coral bedrock of thicker Soil proble in for & 800 911 1520 - Finish to increments in DUD3. ID= MAD - JUOZ Same # Gample Containers Surple babalid, triple bagged 1 put m looler is/ ce. 1540- All off 510 1650 - Meet, w/ Jolic to wind for and plan for formorrow 1770- Send update to Bob for die w exception 1730 - 1/me of re-reing samples Collected

NILKO 67 0400 - Satety meeting @ Codging but ice & supplies. Sandes Collected 040-115 Fredd. 0705-MK 15 4 to sollet in TUOY. UXO arew to sures 41185 M000-7 M800 4 N000-7N800 Weather: Thermy, Stoody and periods of heavy downpour parieds of less min >80 no to very light words 0900 - Finish 30 increments in 72004 IP= MAD-DU04 same # Sample Conference is previous. Sample 120 Cooler w/ ICE. plag crew to hardware 0910 - Sam to purchase should other Thes. Therows should handle almost broke

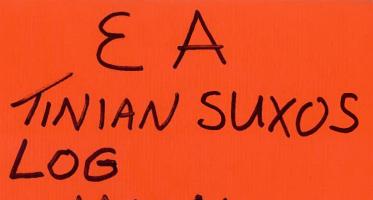
4

68 0950 - Back on site. Uxo sweep prograssing sted ly. 1000 - Sampling Crus break for which of wast out heavy down voor 1045 - Decon equipment & prop to sample last DUOS. Flan to collect Dope of furplicate from DUOST. 1100 - Sampling Crew bock mto 1215 - Switch Uxo crew for John of Nigel. Uxo Sweep of 18 grids complete. Shannon of James to Johnek to rest of dry out slightly 1315 - Switch Uxo are again Shannon & James Continue Uxo avordance of digging holey for sampling. Nort: For Colliction of Dopet frig-ofirst locate \$ 019 hole for primary sumple, then more in random Struction w/in Zott, of Mil Mo radios

60 primare location and one sund hole for dupe. Return to primary location and repeat to dia this ste for triplicate sample 1415- Finish colleting primary duplicate of triplicate samples Type of trip to be submitted blind to Cub, therefore mark other time on parple Labely for lab, shown below. Also different sample FD ID = MAD-DUDS - Primarel@ 1415 DUPE= MAD-DUDLE @ 1030 TRIP = MAD - DUOT @ 1230 All dated 12/12/14. Same If Sample containers is praviews for all sumples 1430 - Trecon equipment in Townpour. Pack vehicles 1930 - Meet w/ Suxos of Hulth 4 batety to review todays activities & program. 2010 - Meeting w/ Suxues + H&S Convolute.

2010 Cont - Meet of Julie to review forday . Flan for formarias is to serve MK, JD, Roger & Shannon to held @ oleoe to finish 1285 of UXO swap locations 12/12 from today plug A&B 120 At strip. Therest of tozon Uxo crow to be in Field C 0800 to prepare for client meeting expected between 0830 \$ 0900. Plan to Samonstrate procedures used to complete this phase of 2030 - Meeting finished. Prepare dasly update. 2200 - Done for day.

12 2/13/16 0400 - Safety mueting C To town to get drukt ne How, ice & other supplies 230 - Brek & Lodging to rece Samples. 0705- MK/ JE, Shamon & Poger homes in MaO plus AdRArids 0715- Head up Dest 1 685 flogs land down plast. 0815 - Tulie back to schule prop Sample Setup Hunt Sumons 0910 - MA & Shannon Vehilles to This Client visi 0956 - RACHEL ROCOE - CNM. DPL Timbore on site w/ Bob Shambach. They are on bole of the process for Uxo surces and sort sumpling. Figer provide sufety bricking


n and wisstons log. Walk around site, were the MEL mand 1000 plus the surface My in the Kaut line then proceed to the grid A100 to deme the exo sweep and soil Sampling procedure 1220 - Ruchel, Tim & Bob off site Uxo crew beek to lodging to demote and dean pack equipment. John (uxo Tech) ME of Jo stay on site to Hugs in the A&B glids 1400 - Finish GP3 of UX0 Plogs. 1430 - Bob at lodging. Debriet 1930 - Repark all San plus of Frush ice to transport to Surpan formarion w/ Jp prior to Fullex to lab.

2140 - Samples reiced & pre to shop at It to and from Juspan Inslaboratory 14 anconster TA. Note Smaples to be analyzed for PAH SWEITOC Sim METALS SW6010 8/6020/7471A EXPLOSIVES SW 8330B WHITE PHOSPHOTOS SW1580

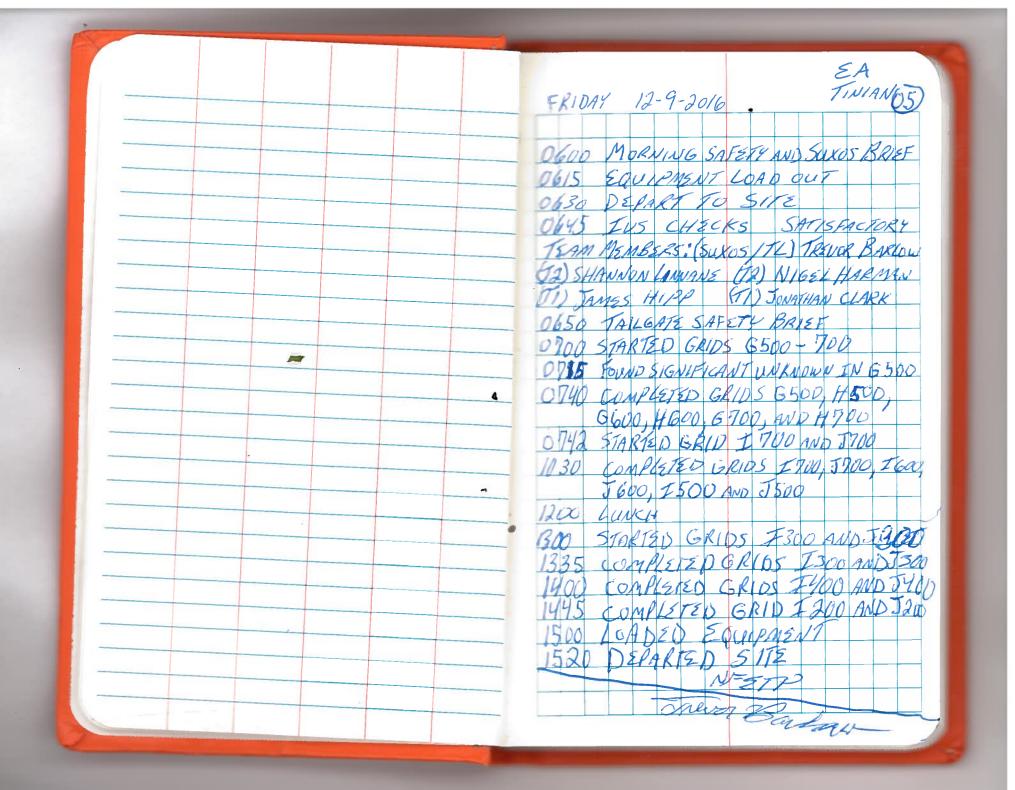
This page is intentionally left blank.

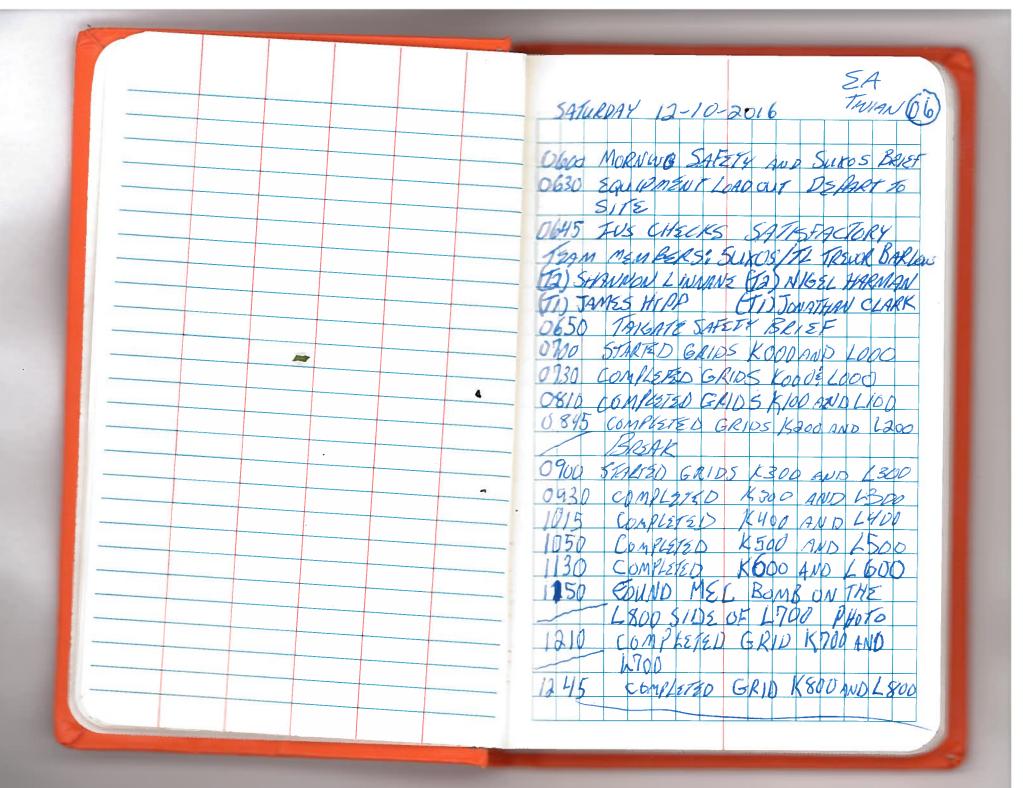
SUXOS Log

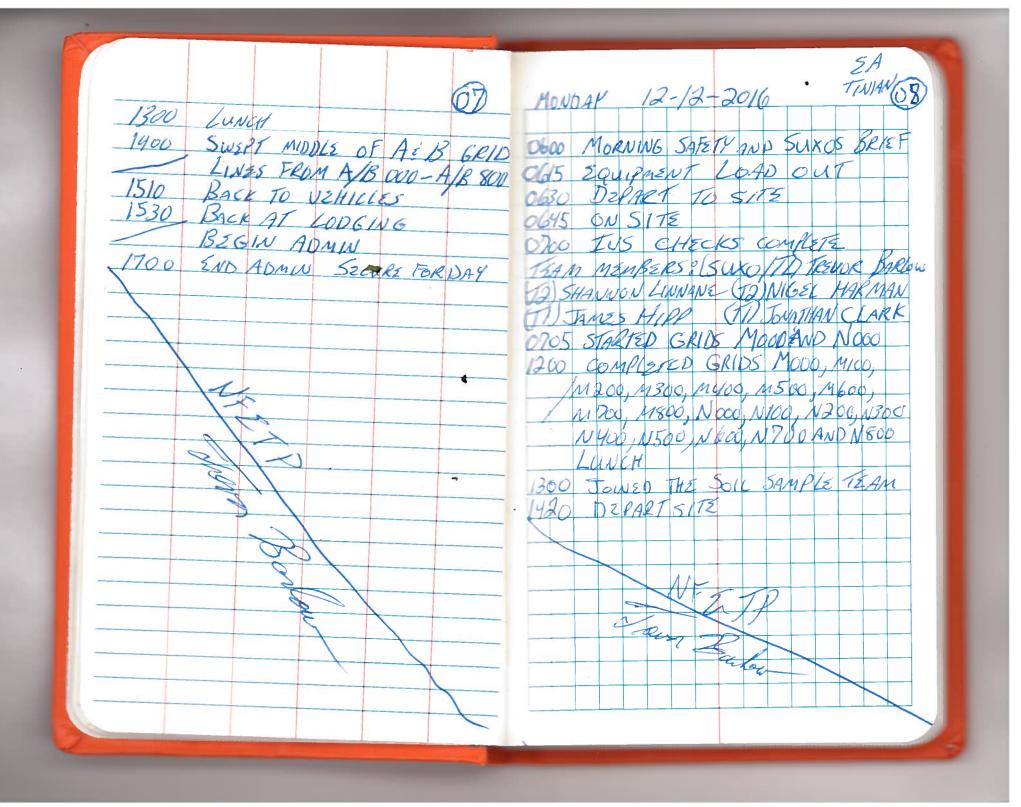
This page intentionally left blank

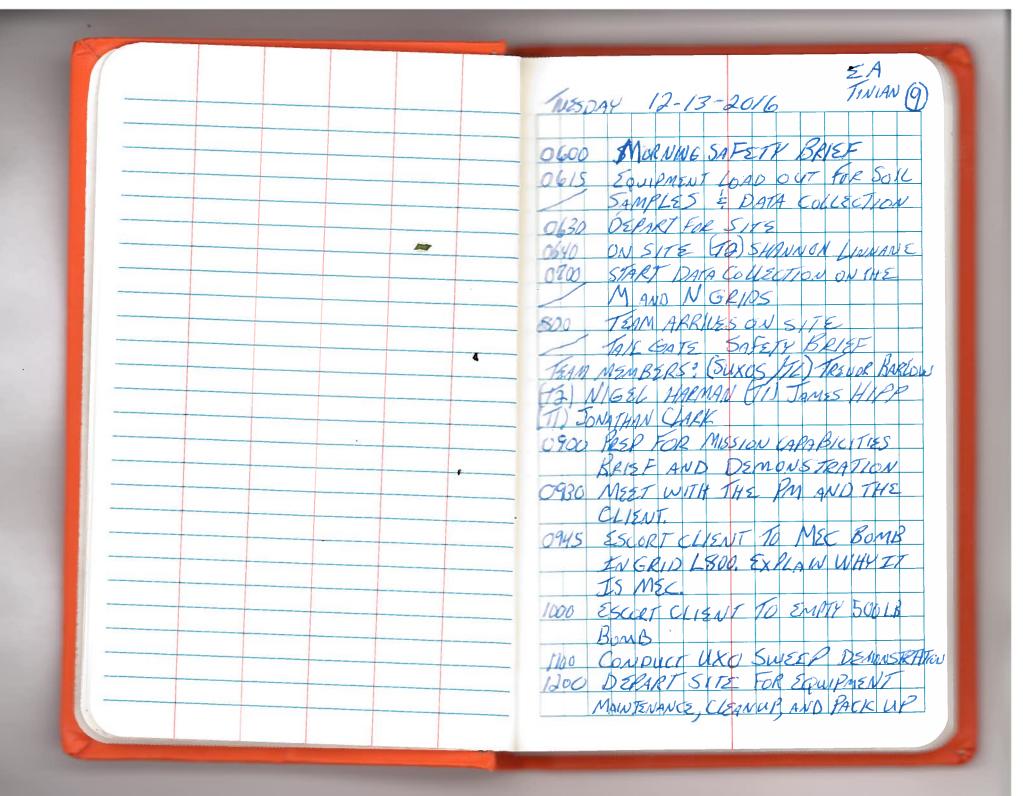
MASALOG Forestry Suppliers, Inc.

1-800-647-5368 #49352 Field Book


	CONTENTS	
PAGE NO.	REFERENCE	DATE
		+
		<u> </u>
		+
		<u> </u>
		†
	593	8


EA TINIAN OD MONDAY 12-5-2016 OGOO MORNING SAFETH AND SUXOS BRIEF 0630 EQUIPMENT LOAD ENTO THE VEHICLE DEPARTED TO THE SITE 0845 ON 5112 0850 IUS CHECKS SATISFACTORY TEAM MEMBERS : GUXOS/TZ) TREVOR BARLOW 5 HANNON KINNAMES (TA) NIESL HARMEN 50 JAMES HYPE (TI) JOUATHAN CLARK 0900 STARTED GRID ADOD/TAILEATE SATETY BAYET (TSB) 0940 COMPLETZO GRUBS A000 A100, A200 A300 0950 SIGNIFICANT UNKNOWN FOUND FOUND FOR GRID A400 PHOTO TAKEN COMPLETED GRIDS A4DO, 4500 AGOD. 1150 A700, A800, AND A 400 JAB 12-8-16 1200 LUNCH 1330 ONSITE 1500 COMPLETED GAIDS BODD, BIDD, B200 B300, B400, B500, B600, B700, B500 AND 13960 JEB 12-8-16 15/1 BACK TO VEHICLES 1530 BACKAT LODGUG BEGIN ADMIN 700 ADMW COMPLETE Theor Barber


	EA
	Timples
	1425044 12-6-2016 MUAN (02)
	0600 MORNING SAFETY AND SUXOS BRIEF
	0630 EQUIPMENT LOAD OUT
	0645 DEPARTFOR SITE
	0650 ON SITE
	0700 JUB CHECKS COMPLETE SATISFECTORY
•	TEAM MEMBERS: (SUKUS/TL) TREVOR BAROW
	(2) SHAWNON LINNANES (72) NIGEL HARMAN
	JAMES HIPP (TT) JONATHAN CLARK
	0705 JONAMAN CLARK REPORTS INSECT BITES
	0710 STARTZO SRIDS COOD/DOOD/TSB
	0735 COMPLETED GRIDS COOD/DUDG
	STARTED GRIDS CLOU DIDO
	0755 COMPLETED GRIDS CIOD/DIDU
	0935 COMPLETED GRIDS C200/D200, C300,
	D300, ND C400/ D400
	1130 COMPLETED GRIDS C500/0500, C600/DEN
	AND C700/D700
	BOU LUNCH
	300 STARTED GRIDS 0800/0800 500316
	1500 COMPLETED GRIDS C800/1800, E905 16
	0700, 2700/7 100, 2800/ 800 3 C 100/ 100
	AND SKOUD/FGCO
	ALL 900 LINE OUTS DATED 12-8-16
	incre Bular
	- milan
	and the second


	EA
	Turner
	- MEDNESDAY 12-7-2016 (WIAN (03)
	6600 MORNING SAFETY AND SULOS BRIEF
	2630 EQUIRMENT MAINTENANCE AND LOAD OUT
	0700 TEAM ON SITE
	0705 IUS CHECK COMPLETE SATISFACTORY
	0710 STARTED GRIDS 5900 H900 TSB
	0945 COMPLETED GRIDS G900 H 800 48
	700 JH00 3800 AND 5500
	BREAK COMPLETED GEO AND HEDO GRIDS
	1000 STARTED ERIDS E400/5-400
	1020 FOUND SIGNIFICANT UNKNOWN
	GRID FYOD
	1050 COMPLETED GRIDS \$ 400/ F400
	BREAK
	1/05 STARTED GRIDS 2310 AND F300
· · · · · · · · · · · · · · · · · · ·	1145 COMPLETED GRIDS E300 AND FROG
	BED LYNCH
	1300 STARTED GRIDS E200 AND F200
	1345 COMPLETED GRIDI ÉBOQ AND FROM
	1425 COMPLETED GRIDS E100 AND FLOD
	1500 COMPLETED GRIDS EDOG AND FOOD 1510 BACK AT VEHICLES
	1520 DEPARED SITE
	AL
	Badaw
	uu

EA
ILANGEDAN 12-8-2016 TINIAN (04)
144850AY 12-8-2016 11NIAN 04
0600 MORNING SAFETY AND SUXDS BRIEF
0630 EQUIPMENT LOND QUIT
0645 ON 5/172
0650 INS CHECKS SATISFACTORY
TEAM MEMBERS: SUXOS/TA TREVOR BARCOW
(12) SHANNON LIMMANES (J2) NIGEL HARMAN
(TI) JAMES HIPP (TI) JOHNATHAN CLARK
0700 TAILGATE GREETY BRIEF (TSB)
OTIO TEAM SURVEYED GAIDS KAND I FOR
VERIFICATION OF PROPER DISTANCE
DISTANCE BEFWEEN FAND KOBSERVED
TO BE TOO CLOSE TOBETHER
0800 STARTED GRIP GIOD (H100
0920 COMPLETED G/00, HIDO, F100. 2 JIOD
 0925 STARTED JODO AND IODO.
0950 COMPLETED JUDD AND IDDO
BREAK TO MEET WITH PM BOB SHAMBACH
1050 514R120 400 NO 14000
1120 COMPLETED GODO ANIS HODO
 1130 STARTED G200 AND H200
 1200 LUNCH
300 EDMPKETED G200 AND 4200
15.30 COMPLETED G300, H300, E400 AND 4400
1545 DERARTED SITE
1545 DERARTED SITE
Town Denov

THESDAY 12-13-2016 THUSDAY 12-13-2016 THOU COMPLETED MAINTENANC 1400 COMPLETED MAINTENANC 1400 EQUIPMENT PACE OUT/LOOP CUT 1400 ADMIN REPORTS 1600 REPORTS COMPLETE . the sta Treat r

UXOQCS-UXOSO Log

This page intentionally left blank

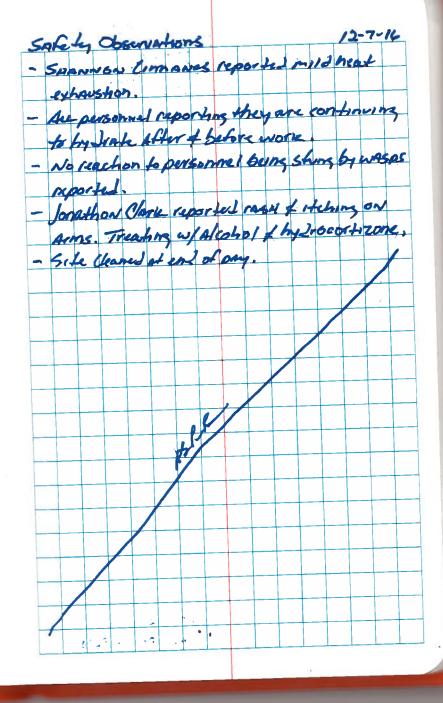
UKOQCS/UXOSO LOG MASAlog AMMO Depot Pena, Tinian

> Forestry Suppliers, Inc. 1-800-647-5368 #49352 Field Book

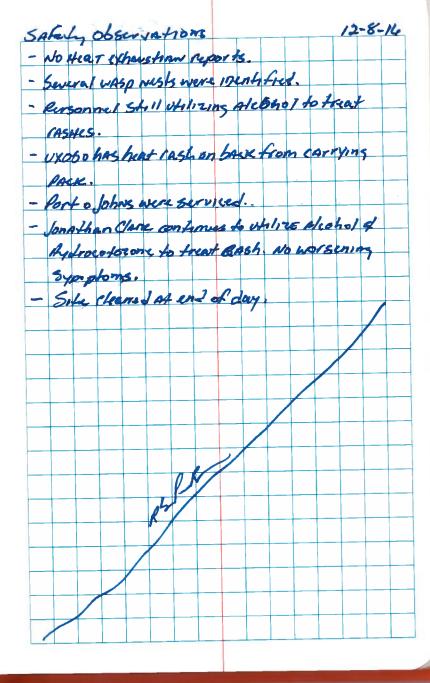
	CONTENTS		
PAGE NO.	REFERENCE	DATE	
	Roger Perkins		
	Roger Perkins UX05-27 / UX09CS		
			-
			-
			-
		_	-
			1 /
]
		*	
			4
			-
			1
		L	1

12-5-K	\bigcirc	
Noss	Conducted SSHP brief And Review	
	of work DLAN.	
0700	Suxos & Geo conducted Operations	
	brief.	
0745	LOAD Equipment.	
0900	Depart for MRS. Consuct Equipment	
	CHECKS IN IVS. NO LISCREPANCIES. TAILAS	f
0830	Bigin Surface operations in Grid	
000	A100	
	** ALL QC CHECKS WILL BE	
-	CONDUCTED IN CONJUNCTION	
	WITH Sweep OPERATIONS **	-
1200	LUNCH	-th
a second and a second		-
1300	Continue sweep ops.	
1400	Break	-
1415	Resume sure pops.	-
1500	Sweep Ops complete. Depart Goos	-
	Clean of Stor - Ravipment.	
1530	Debiner. Prost MR	-
1600	5.00.	-
		-
	Grios QC'D: 18	-
	A100-A900	-
	B100-15900	-
	15R	-

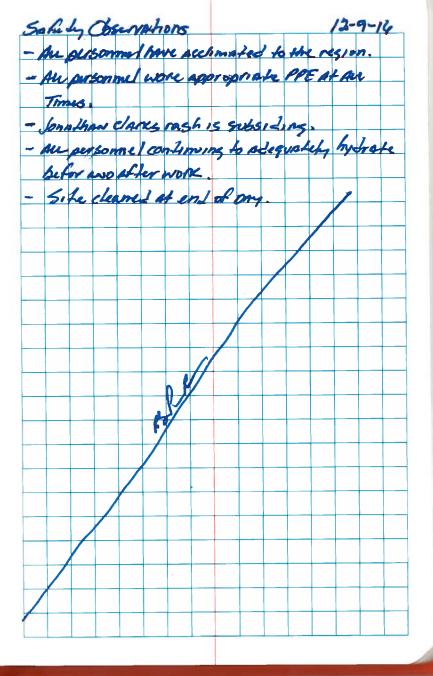
SAFater Observations 12-5-16 - Heat & Homedy : ilysrahow ISA MUST. - UXO TECHI JAME HApp was Miledly Deby STAted AT end of Day, Stated be had since infection Prior to Arrival. - Shos Trop & FAIL BAZARde Are high due to thisk vigetation. - Treesin transects were cut at an Anothe CAUSING a potential puncture hazard. - Port-A-JOAN delivered on site


0 12-1-14 SAfety Grief; Opsbrief 0600 LOAD Equip; Depart for MRS. 0630 IVS CHECKS; GOAR Prep. TAilight Logil aso 0.58 Beginsweep opsiniarin Clos. 0915 Break 0930 Resume sweep Opc. Resume DATA Collection Lunia 1145 1215 Resume Ops 1300 Sweep team slightly disory gal. id ave to heavy ves, Recommended ANATV or Scipline prior to bestining Sweep. 1415 Break 1450 Resume Sweep Ops. DAtA Collection HAHed (See Safety Comprests) 1515 Severep sps complete to part Grips 1530 Stow equip. Fichtief. 1600 200 Grins QC.D: #24 C-100 - C900 D-100 - D900 E 600 - E900 (Possibly mislaterid.) F600-F900 KK

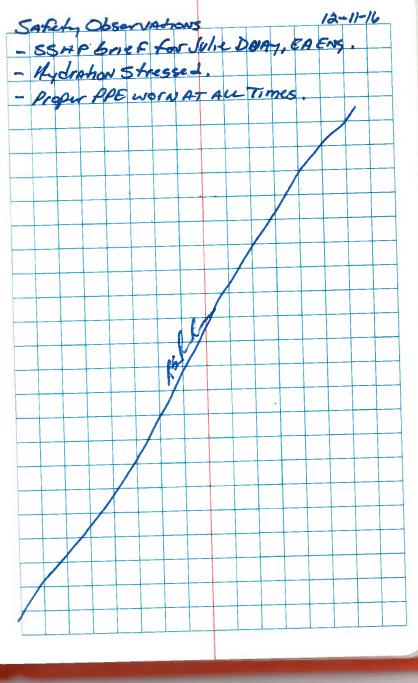
- MIKE Kally reported Mille beat exhauston. - MIKE Kally reported Mille beat exhauston. - Jonathan Clark reported Numerous Bug bites From privar Day. - James Hipp Stors by wasp. No Alkasic Sympt. - Trevor Barlow Stors by wasp. No Alkasic Sympt.


HALL personne / Briefed to continue hydrations befor & Afder WORK HE

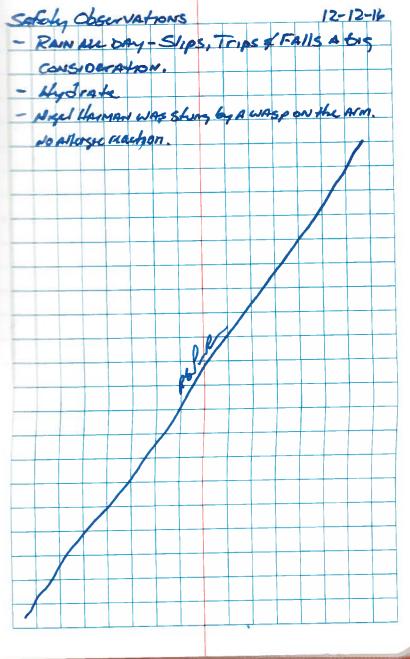
(A 7 K					3
12-7-14	<u> </u>				e
06.60	Safety	i ops br	yf.		
0630	LSAD equ	p & depa	rt for M	RS .	1.4.1
0640	Equip CA	Eqx. TAL	set-brin	£	
ore	BASIAR	sweer of	В		
		or of grie		K. Pois	bility
		ng Incorre			
Correction		et entries		T RSF	2
note ofor	Besin	1900-5	900. No	1700 SI	id stars
U start	inot be	1 Gril	i order	Dari- K	. QC CHECKER
0800		-F.500. G			
5050	Broke				
0145		Guilip 0	DS.		
12ro	Lunch				
1230	Kesume	Gurep Op	s in É-F	200. QC	cheers
		chor wit			
1415	Brick				
1450	Legard	Sumpe	Dp. in E.	FICO.Q	c cheves
		stionvir			
1515		Le Compi		stands	
1530	57.0	aup. To		-	
1550	Elpart				
1600	Enp.				
		Gross	mplet	-: 14	
			100 150	E000-8	400
			400 800	F000-F	400
		SPR			
	x	ann	~		


S

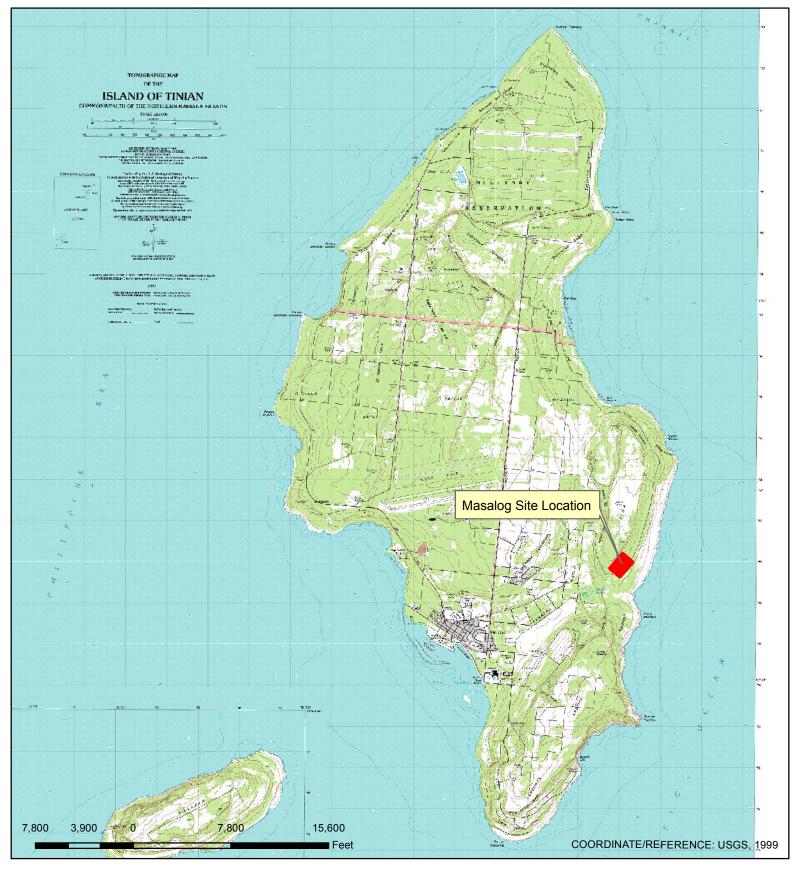
A 61 14	6
12-8-14	(4)
doo	Satury & Ops brief. Lono equip.
0630	Depart For MRS.
0640	Squip ettecks, Tanlgade brief.
0700	RESWEEP BADD. QC CHELES.
0730	Invistigation of possible and eroors.
	AT the goo line I is 100' From K.
0800	Besin Succe Ors in I - K 200. OC CHECKS.
0945	BREAK BOD SHAMbach ON SITE .
1030	Safely brief for PM. Rosume operations
1200	Lunch
1230	Resome Spirations
1430	Break
1445	Resume Ops
1530	Opscomplete. Return to Kehicks,
	Stowgear. Debreef.
1600	£0D.
10.00	
-	Gribs complete & QC'D: 14
	6000-6400
	4000-4400
-	5000-1100
	1000-1100
	DEVD
	101-1
-	

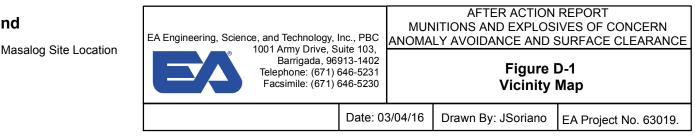

12-9-16 5 Safety, Ops beref. Logo equipment. 000 0630 Depart for MRS .. 0/040 Arrive MRS. Equipment Checks. Tarkate brot, Bigin Susep & Data Colkution. QC 0700 0930 Break Require observation & QC of aperations. 0945 Lumh 1200 1200 Resume Ors & QC CHILLES. Briak 1400 Resame op + QC CHUCKS. 1415 Ops complete. Depart Corids, ston equip. 1530 Debruf. Ocpart MRS. 1545 200. 1600 Grios Complete # QC'd: 18 G-500 - G700 4500 - 4700 E - Z I 200-I 700 1200-1700 Rolt

12-10-16 6 Safely & Ope bruef. Loss equiparent. 0600 0130 Depart for MRS dito Arme MRS. Equip crease Tailante brut. Resume Sweep & Data Callection Ops. Oc conces 0655 0945 Break. Resume Ops. OC checks. 1000 1300 lumh Resume Ops. QC CHEURS. 1380 Depart Corids. Stow equipment. 1515 Debrick Depart MRS. 1530 EDD. Julie Dury (EAENS) ONSITE. 1600 DPS & XET Notified of MEL Hem /ocafed in 1615 GNLL Grins complete & QC'd: K000 - K800 L000 - 1800 Late Eatry MEC (Incondiary Bomb; 500 16) located AND MARKES. Data collected in Trimble to be Anotated in Final Report.


Safely Observations. 12-10-16 - Au pursonnel are violizing the Appropriate PPE At An 4mes - Apequate water supplies are on hand to facelitate hydration. - Adequate breaks are faken througast the day. - Site was chand prior to departing MRS - SCHP Consulted for file Dury.

12-11-14.	D
0600	Safety brief. Sol Sample brief.
	LOAD Equiphent.
0630	Depart for MRS
DLAO	Arrive MRS . Equip CHECKS, Equip preps,
0720	Bigin Soil Sampling Activities.
0930	Break
0945	Resume Soul Sample Activities
1130	Winch. Personnel CHANGE For UXO 25 Cort.
1200	Resume Soul Sampling Activities,
1400	Break .
145	Regome Activities.
1530	Activities complete. Stow glav,
1600	200
	- · · · · · · · · · · · · · · · · · · ·
se to a	DICISION UNITS COMPLETE: 3085
	DU1, DUZ, DU3
	P.P.
	Ro
-	


.


12-12-10					Ð
0620	SAFety C	os el Sam	pling b	ref.	
	LOAD Equi	<i>р</i>			
0630	Depart G	MRS.			
0640	Arrine MR	5. Equip (Heres :	+ Preps	TAIlyate
0700	Besin Sure.	cp 2 SAM	oling Op	5.	
(900	BRIAK S	mpling fea	m to st	ore for	
	Supplies.				
0915	Return to su	verp com	ations.	,	
1045	Sampling to	am refurn	c.		
1100	Riter to S	ampline Au	funtice		
1130	UND Hann lui	nch			
1200	Return to sw				
1230	Sweep Ops.	Complete			
1430	Sampling Ac	truttes co	malele	el.	244.4
445	Depart MRS		nprere	STON	7241.
1500	200				
	Du's complet	41: NUL	Dur		
	Du's complet				
					anty in
	Grios Complet		0-1800	N 000-	4900
	Strap Complet	100-10	-Y		-
		PSPA			
			_		

APPENDIX D

AFTER ACTION REPORT, MUNITIONS OF EXPLOSIVE CONCERN ANOMALLY AVOIDANCE AND SURFACE CLEARANCE

Legend

Legend

Site Boundary

Ŧ Ν nTom, Mapm

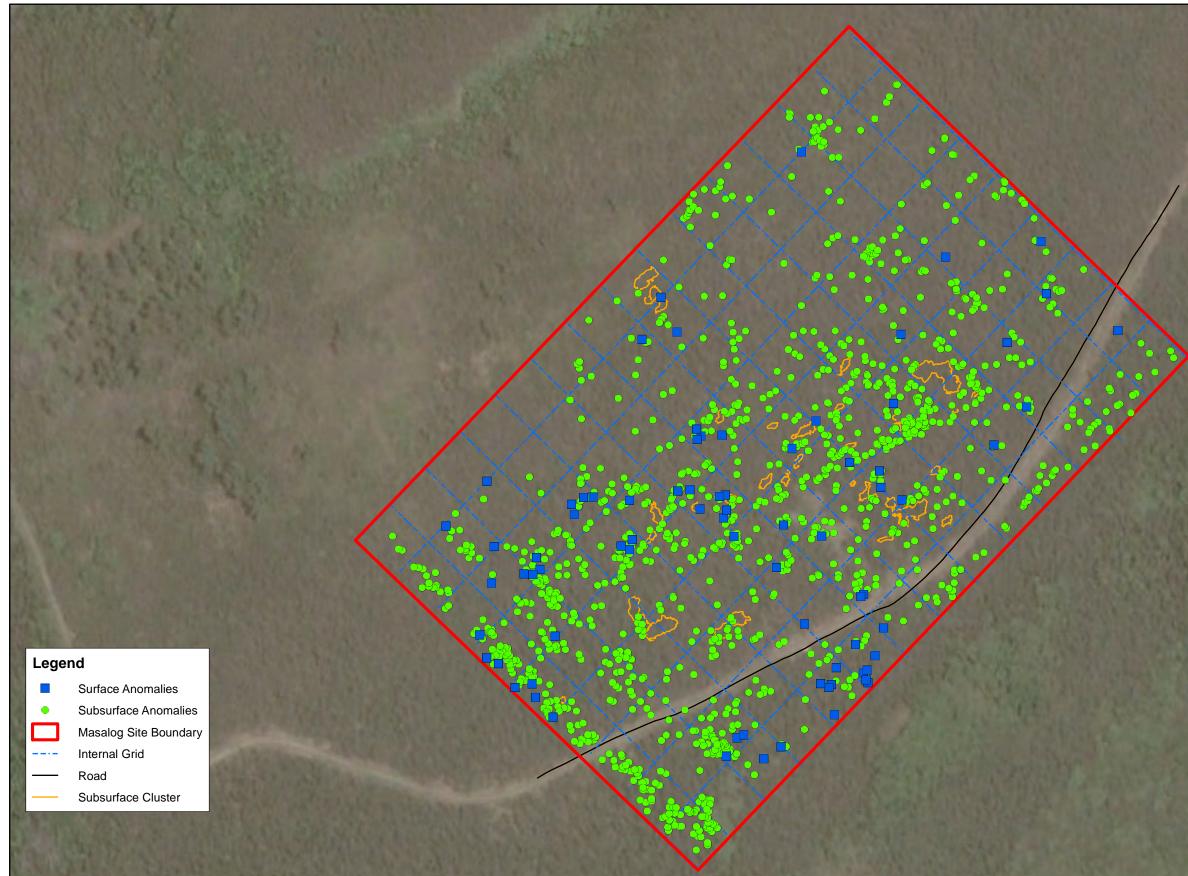
	GS_1984_UTM_Zone_55N							
Technology, I rmy Drive, S		AFTER ACTION REPORT MUNITIONS AND EXPLOSIVES OF CONCERN ANOMALY AVOIDANCE AND SURFACE CLEARANCE						
arrigada, 969 hone: (671) (simile: (671) (646-5231	Figure D-2 General Location						
	Date: 03/04/16							

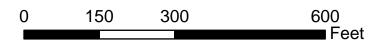
AFTER ACTION REPORT
MUNITIONS AND EXPLOSIVES OF CONCERN

Ť

Ν

			S. Sector St.	
		123		A fair for the second
00				
00				
Carlo B.	CIT	COORD	DINATE/REFERENCE: WG	S_1984_UTM_Zone_55N
			AFTER ACTION NITIONS AND EXPLOS	REPORT
nd Technology 1 Army Drive,	Suite 103,		ALY AVOIDANCE AND	SURFACE CLEARANC
Barrigada, 9 lephone: (671)	6913-1402) 646-5231		Figure I Site Grid)-3 and
acsimile: (671)	646-5230		Transect L	
	Date: 01	/27/17	Drawn By: RKinchla	EA Project No. 63019





Ν

	ALC: NOT	A DECIMAL PROPERTY AND INCOME.	Contraction of the local division of the loc
			all there are a large
			All and a second se
			1000
			A REAL PROPERTY OF
			Mr. S. Barrows
			A State of Association of State
			States and the second
			A REAL PROPERTY AND ADDRESS OF
			STATISTICS IN THE
			ALL DOUGHT
			California (California)
			ALCON A LAND
			Statistics and Party
A SHORE WE WE			and the second second
a support with			A State The Party of the
			and the second second second
			The second second
			A CANADA AND AND AND A CANADA AND A CANADA AND AND AND AND AND AND AND AND AN
			ALL ALL PARTY OF
			International Constitution
			and the second second
			at the standard and
			A PART & Sa
			All and a second second
			A CONTRACTOR
			2100
			and the second second
			A REAL PROPERTY
			A CONTRACTOR OF THE OWNER
			Party and a state of the
			State of the second
			all a state of the second
			the state of the
			The Part of the I
	COOR	DINATE/REFERENCE: WG	S_1984_UTM Zone 55N
	1	AFTER ACTION	
	MU	INITIONS AND EXPLOS	
nd Technology, Inc., PBC 1 Army Drive, Suite 103,			SURFACE CLEARANCE
Barrigada, 96913-1402		F !	
lephone: (671) 646-5231		Figure D	J-4
acsimile: (671) 646-5230		Grid Identifi	cation
Date: 0	1/27/17	Drawn By: RKinchla	EA Project No. 62010
Dui0. 0	.,_,,,,,	- Dramin Dy. Manula	

Ť

Ν

Date: 01	/27/17	Drawn By: RKinchla	EA Project No. 63019
1 Army Drive, Suite 103, Barrigada, 96913-1402 lephone: (671) 646-5231 acsimile: (671) 646-5230		Figure E Figure Subsurf	D-6
nd Technology, Inc., PBC		AFTER ACTION NITIONS AND EXPLOS ALY AVOIDANCE AND S	
	COORE	DINATE/REFERENCE: WG	S_1984_UTM_Zone_55N
			and the second second
			States -
			AND INC /
			ALL PART
			ALC: NO.
			State In 19
			THE SE
			a series
			No. Contractor
			Real Providence
			a transferration
			112 112
			Contraction of the
			ALL LEF ST
			ALL STREET
			Carl and and and and
			Carlo Carlo
			and the second
			and the second second
			A State B
			Contraction of the
			and the second
			AND COLUMN
			Ball And
			L. ARTICLE
			A LO DE LA

APPENDIX E

ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

Analytical Report

Level IV Data Package

Work Order #: 1612702

Project: Guam Samples

Eurofins Lancaster Laboratories, Inc. Kathy Binkley 2425 New Holland Pike Lancaster, PA 17601

Granew Bey

Date: 1/12/2017

Charles O`Bryan, Director, Quality Management

RTI Laboratories 31628 Glendale St. Livonia, MI 48150

Reviewed & Approved By:

TEL: (734) 422-8000 FAX: (734) 422-5342 Website: www.rtilab.com

Table of Contents

Eurofins Lancaster Laboratories, Inc.

Project: Guam Samples

RTI Laboratories, Work Order # 1612702

1 Case Narrative	1
2 Definitions and Acronyms	2
3 Chain of Custody and Sample Receiving Documents	3
4 Sample Receipt Checklist	5
5 Workorder Sample Summary	7
6 Dates Report	8
7 Analytical Report	9
8 QC Summary Report	.16

9 CLP-Like Organic

9.1 NPD

9.1.1 White Phosphorus in Soil - SW_7580S

9.1.1.1 FormI	18
9.1.1.2 FormII	28
9.1.1.3 FormIII	29
9.1.1.4 FormIV	30
9.1.1.5 FormVI B	31
9.1.1.6 FormVI C	32
9.1.1.7 FormVII B	33
9.1.1.8 FormVIII D	36
9.1.1.9 Run 91424	37
9.1.1.10 ICAL Run 91424	109

10 CLP-Like Inorganic

10.1 Balance

10.1.1 Percent Moisture - PMOIST

10.1.1.1 FormI	140
10.1.1.2 FormVI	149
10.1.1.3 Run 91282	151

RTI Laboratories, Inc.

CLIENT:Eurofins Lancaster Laboratories, Inc.Project Name:Guam SamplesWork Order:1612702

Date: 12-Jan.-17

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received at the RTI Laboratory, Livonia, MI via commercial delivery on 12/22/2016. Samples were received on wet ice and sample blank temperatures are recorded on the chain of custody and sample receiving documents. Sample preservation is checked on receipt (where applicable) and noted on the chain of custody. Adjustments required for sample preservation (when performed) are recorded for the affected samples. The sample set consisted of 7 soil samples.

SAMPLE ANALYSIS:

Samples were analyzed at the RTI Livonia Laboratory for: White Phosphorus - EPA Method 7580 Percent Moisture - ASTM-D2216

QUALITY CONTROL:

White Phosphorus Analyses:

All sample analyses included a Method Blank, LCS, LCSD and MS/MSD where applicable. All QC parameters were within established control limits except where noted on the QC summary forms or below. Initial and continuing calibration results were within method specifications.

Surrogate recoveries were within control limits.

Wet Chemistry Analysis:

All sample analysis included the method specified quality control samples.

No other problems were noted during the analytical events associated with this report.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Celato Hor Jash

Signed:

Date: January 12, 2017

Charles O'Bryan, Director, Quality Management

for

Case Narrative Page i of i

Page 1 of 152

RTI Laboratories, Inc. - Definitions and Acronyms

Date Reported: 1/6/2017 Revision v1

DEFINITIONS:

DF: Dilution factor; the dilution factor applied to the prepared sample.

DL: Detection Limit; The lowest concentration of analyte that can be detected by the method in the applicable matrix.

DUP: Duplicate; aliquots of a sample taken from the same container under laboratory conditions and processed and analyzed independently, used to calculate Precision (%RPD).

LCS: Laboratory Control Sample; prepared by adding a known amount of target analytes to a specified amount of clean matrix and prepared with the batch of samples, used to calculate Accuracy (%REC).

LCSD: A duplicate LCS sample, used to calculate both Accuracy (%REC) and Precision (%RPD)

LOD: Limit of Detection; a laboratory verified concentration that can be detected at three times greater than the noise level. This concentration is equal to or greater than the DL.

LOQ: Limit of Quantitation; The lowest verified limit to which data is quantified without qualifications. Analyte concentrations below the LOQ are reported with a "J" qualifier.

MBLK: Method Blank; a sample of similar matrix that does not contain target analytes or interference that may impact the analytical results and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedure, used to assess and verify that the analytical process is free of contamination.

Mg/Kg or mg/L: Units of part per million (PPM) - milligram per Kilogram (W/W) or milligram per Liter (W/V).

MS: Matrix Spike; prepared by adding a known amount of target analytes to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available, used to calculate Accuracy (%REC)

MSD: A duplicate MS sample, used to calculate both Accuracy (%REC) and Precision (%RPD)

% REC: Percent Recovery of a known spike (SPK); a measure of accuracy expressed as a percentage of a measured (recovered) concentration compared to the known concentration (SPK) added to the sample. This is compared to the Low Limit and High Limit.

% RPD: Relative Percent Difference; a measure of precision expressed as a percentage of the difference between two duplicates relative to the average concentration. This is compared to the RPD Limit.

Qual: Qualifier that applies to the analyte reported

SPK: Spike; used in the QC section for both SPK Value and SPK Ref Val

Ug/Kg or ug/L: Units of part per billion (PPB) - microgram per Kilogram (W/W) or microgram per Liter (W/V).

QUALIFIERS:

*: Reported value exceeds the maximum allowed concentration by regulation or permit.

B: Analyte detected in the associated Method Blank at a concentration greater than 1/2 the LOQ

- G: ICB/CCB result is greater than the MDL
- H: Holding time for preparation or analysis has been exceeded
- J: Estimated result. Greater uncertainty is associated with this result and data reported is estimated.

M: Manual Integration used to determine area response

- P: Second column RPD exceeds 40%
- Q: % REC exceeded control limits. When applied to sample analytes denotes an associated LCS recovery that exceeded control limits.
- R: % RPD exceeds control limits

T: MBLK result is greater than 1/2 of the LOQ

- U: The analyte concentration is less than the DL. The result is reported as less than the LOD
- X: Matrix spike recovery for the noted analyte exceeded control limits. Applied to the MS/MSD parent sample.
- Y: Percent Difference/Drift in the associated CCV exceeded acceptance criteria.
- Z: Percent Difference/Drift in the associated ICV exceeded acceptance criteria.

20 E	u	ro	fi	n	S
------	---	----	----	---	---

Analysis Request / Environmental Services Subcontracting Form

Sample Nos.:

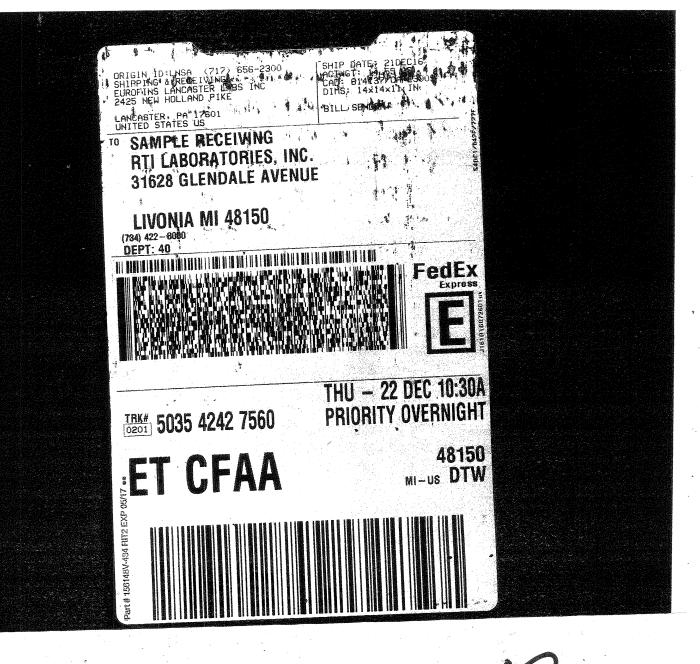
Acct:

For Lancaster Laboratories Use Only

Group No.: 1746738

12/21/16 Date:

8755030-36


Lancaste Laborate Laboratories

Lancaster

							24 <u>79946888</u>				A	nal	/ses Re	eque	stec	k				
Subcontractor: RTI LABORATOR	ES				a substantia a subst	Matrix	((F	res	ervatio	n Co	des					
LLI P.O.# :	Courier:	Fed Ex	(Preserv H=HCl	ation Codes T=Thiosulfat	e E
Submit report to: <u>Kathy Binkley</u>		Ext.:	13	93		ble		ų	e										B=NaOH ₄ O=Other	oles upo
Submit invoice to: Kathy Binkley						□ Potable □ NPDES		ainei	INV											samp ted)
State where samples were collected:	Guam			0				Containers	7580 for White orus.										nts:Reference I # DH041715 a	re of (
Sample Identification	Date Collected	Time Collected	Grab	Composite	Soil	Water	Other	Total # of (Method 758 Phosphorus									request package	Level IV data ».	Temperature of samples upon receipt (if requested)
MAD-DU01	12/11/16	11:05		Х	х			1	х									8755030)	
MAD-DU02	12/11/16	13:30		х	х		<u> </u>	1	х									875503 ⁻		
MAD-DU03	12/11/16	15:20		х	х			1	x									8755032	2	
MAD-DU04	12/11/16	09:00		х	х			1	X									8755033	3	
MAD-DU05	12/11/16	14:15		х	х			1	х								·	8755034	1	
MAD-DU06	12/11/16	10:30		X	х			1	x									875503	5	
MAD-DU07	12/11/16	12:30		x	х			1	x									875503	3	
Turnaround Time Requested (TAT): Sta	ndard Rush	NG44/VG 4/10 (MARTIN AMARTAN)				VTS:RTI will not b			ies: D	ry we	eight r	epor	ing would	be ap	oprop	oriate	for the	White Phos	phorus as these	e soil
Date Results are Recaded.			Relinquished by: Kathe Binchl		kle	<u>ц</u>	*****	Date 12-0	6	Time 1550	C	id	d øy:	Ŋ	NS	Date 12-22-16	^{Time} 14:02			
Data Package Options (circled when require	-d) I			Reli	nqui	ished b	y :	ing.	لا		Date	•	Time	Rec	eive	d by:			Date	Time
Type I (validation/NJ Reg) Type VI(Raw Data Type II (Tier II) Type III (Reduced Type IV (CLP SOW) TX TRRP-13		SDG Comple Yes No		Reli	nqu	ished b	y:				Date	9	Time	Rec	eive	d by:			Date	Time
MA MCP Site-specific QC Required (I CT RCP Internal Chain of Custody R				Reli	nqu	ished b	у.				Date	;	Time	Red	ceive	d by:			Date	Time

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601 (717) 656-2300 Fax: (717) 656-6766

Copies: White copy should accompany samples to Lancaster Laboratories. The yellow copy should be retained by the samplers.

Temp Blank: 3.0°C

Client Cooler: K09092

RTD RTI LABORATORIES, INC.			Livonia, TEL: (73	oratories lendale St. MI 48150 84) 422-8000 www.rtilab.com	Sample Receipt Checklis							
Client Nar	ne: EUR02				Work	Order Number:	1612702					
RCPNo:	1	Date and Time Rece	ived:	12/22/2016	2:02:00 PM	Received by:	Armando Flores					
Completed	d By:			Reviewed By:		Nach	I dear					
Completed	d Date: 12/27	7/2016 5:30:39 PM		Reviewed Date:	12/28/201	16 11:55 AM						
Carrie	er Name:	FedEx										
1.	Chain of cust	tody present?			Yes	x No 🗆						
2.	Chain of cust	tody signed when relinquished	and receive	ed?	Yes	x No 🗌						
3.	Chain of cust	tody agrees with sample labels	?		Yes	X No 🗌	Not Present					
4.	Are matrices	correctly identified on Chain of	custody?		Yes	x No						
5.	Is it clear what	at analyses were requested?			Yes	X No 🗆						
6.	Custody seal	s intact on sample bottles?			Yes	□ No □	Not Present x					
7.	Samples in p	roper container/bottle?			Yes	X No						
8.	Were correct	preservatives used and noted	?		Yes	x No 🗌						
9.	Sample conta	ainers intact?			Yes	X No						
10.	Sufficient sar	mple volume for indicated test?			Yes	X No						
11.	Were contain	ner lables complete (ID, Pres, D	Date)?		Yes	X No						
12.	All samples r	eceived within holding time?			Yes	X No						
13.	Was an atten	npt made to cool the samples?			Yes	X No 🗌	NA 🗌					
14.	All samples r	received at a temp. of > 0° C to	6.0° C?		Yes	X No	NA					
15.	Sample Tem	p. taken and recorded upon rec	ceipt?		Yes		3 To °C					
16.	Water - Were	bubbles absent in VOC vials?			Yes	□ No □	No Vials x					
17.	Water - Was	there Chlorine Present?			Yes	□ No □	NAX					
18.	Water - pH a	cceptable upon receipt?			Yes	□ No □	No Water x					
19.	Are Samples	considered acceptable?			Yes	x No	_					
20.	Custody Sea	ls present?			Yes							
21.	Traffic Repor	t or Packing Lists present?			Yes							
22.	Airbill or Stick	ker?			Air Bill	x Sticker	Not Present					
23.	Airbill No:				503542	2427560						
24.	Sample Tags	s Present?			Yes	No 🛛						
25.	Sample Tags	s Listed on COC?			Yes							
26.	Tag Numbers	S:										
27.	Sample Cond	dition?			Intact	x Broken	Leaking					
28.	Response wh	nen temperature is outside of ra	ange:									
29.	Preservative	added to bottles:										
Case N	umber:	SDG:		S	AS:							

Adjusted?

Checked by

Any No and/or NA (not applicable) response must be detailed in the comments section below.

Client Name:	EUR02			Work Order Number: 1612702								
	+++FOREIGN/RESTRICTED SOIL+++ Client sent us their permit to receive foreign soil (samples are from Guam). Client did not have RTI's permit to receive foreign soil.											
Client Contacted: Contact Mode:		No X N Fax: Ema		son Contacted	:							
Date Contacted:			Contacted By:									
Regarding:												
Client Instructions	8:											
CorrectiveAction:	CorrectiveAction: Sent client copy of RTI's permit to receive foreign soil for future samples.											
Cooler No	Temp ⁰C	Condition	Seal Intact	Seal No	Seal Date	Signed By						
K09092	3.0	Good	Not Present									

SampleID	ContainerID	Туре	Vacuum Read (inch Hg)	Orig pH	Adj pH	Req Min pH	Req Max pH
1612702-001A	Cont-01 of 01	Bottle					
1612702-002A	Cont-01 of 01	Bottle					
1612702-003A	Cont-01 of 01	Bottle					
1612702-004A	Cont-01 of 01	Bottle					
1612702-005A	Cont-01 of 01	Bottle					
1612702-006A	Cont-01 of 01	Bottle					
1612702-007A	Cont-01 of 01	Bottle					

RTI Laboratories, Inc. - Workorder Sample Summary

Date Reported: 1/6/2017 Revision v1

Client:

Eurofins Lancaster Laboratories, Inc.

Project: Guam Samples

Lab Sample ID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1612702-001A	MAD-DU01		12/11/2016 11:05 AM	12/22/2016 2:02 PM	Restricted Soil
1612702-002A	MAD-DU02		12/11/2016 1:30 PM	12/22/2016 2:02 PM	Restricted Soil
1612702-003A	MAD-DU03		12/11/2016 3:20 PM	12/22/2016 2:02 PM	Restricted Soil
1612702-004A	MAD-DU04		12/11/2016 9:00 AM	12/22/2016 2:02 PM	Restricted Soil
1612702-005A	MAD-DU05		12/11/2016 2:15 PM	12/22/2016 2:02 PM	Restricted Soil
1612702-006A	MAD-DU06		12/11/2016 10:30 AM	12/22/2016 2:02 PM	Restricted Soil
1612702-007A	MAD-DU07		12/11/2016 12:30 PM	12/22/2016 2:02 PM	Restricted Soil

Page 7 of 152

RTI Laboratories, Inc. - DATES REPORT

WO#: 1612702

Client: Eurofins Lancaster Laboratories, Inc.

Project: Guam Samples

Sample ID	Client Sample ID	Collection Date	Matrix Test Name	Leachate Date Prep Date	Analysis Date
1612702-001A	MAD-DU01	12/11/2016 11:05 AM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 1:40 PM
1612702-002A	MAD-DU02	12/11/2016 1:30 PM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 1:59 PM
1612702-003A	MAD-DU03	12/11/2016 3:20 PM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 2:19 PM
1612702-004A	MAD-DU04	12/11/2016 9:00 AM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 2:38 PM
1612702-005A	MAD-DU05	12/11/2016 2:15 PM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 2:57 PM
1612702-006A	MAD-DU06	12/11/2016 10:30 AM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 3:17 PM
1612702-007A	MAD-DU07	12/11/2016 12:30 PM	Restricted Soil		
			PMOIST-Percent Moisture	12/27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-White Phosphorus in Soil	1/4/2017 8:52 AM	1/5/2017 4:15 PM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection Date:	12/11/2016 11:05:00 AM
Project:	Guam Samples		
Lab ID:	1612702-001	Matrix: Restricte	d Soil
Client Sample ID:	MAD-DU01		

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		N	lethod:	SW7580				Analyst: DS
White Phosphorus	1.1	U	0.44	1.1	1.6	µg/Kg-dry	1	1/5/2017 1:40 PM
Surr: Tripropylphosphate	33.2			27-112		%Rec	1	1/5/2017 1:40 PM
Percent Moisture		N	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	34		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Date Reported: 1/6/2017 Revision v1

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 1:30:00 PM
Project:	Guam Samples			
Lab ID:	1612702-002	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU02			

Analysis	Result (Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Ν	lethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.42	1.0	1.5	µg/Kg-dry	1	1/5/2017 1:59 PM
Surr: Tripropylphosphate	29.3			27-112		%Rec	1	1/5/2017 1:59 PM
Percent Moisture		Ν	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	30		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

Page 10 of 152

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 3:20:00 PM
Project:	Guam Samples			
Lab ID:	1612702-003	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU03			

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Μ	ethod:	SW7580				Analyst: DS
White Phosphorus	0.91	U	0.37	0.91	1.4	µg/Kg-dry	1	1/5/2017 2:19 PM
Surr: Tripropylphosphate	37.3			27-112		%Rec	1	1/5/2017 2:19 PM
Percent Moisture		М	ethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	22		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 9:00:00 AM
Project:	Guam Samples			
Lab ID:	1612702-004	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU04			

Analysis	Result Qı	ual DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Method:	SW7580				Analyst: DS
White Phosphorus	1.0 U	J 0.41	1.0	1.5 µg/l	Kg-dry	1	1/5/2017 2:38 PM
Surr: Tripropylphosphate	38.3		27-112	%	Rec	1	1/5/2017 2:38 PM
Percent Moisture		Method:	ASTM-D2	216			Analyst: ASP
Percent Moisture	30	1.0	1.0	1.0 v	wt%	1 '	12/27/2016 11:30 AM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 2:15:00 PM
Project:	Guam Samples			
Lab ID:	1612702-005	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU05			

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Μ	ethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.42	1.0	1.5	µg/Kg-dry	1	1/5/2017 2:57 PM
Surr: Tripropylphosphate	39.9			27-112		%Rec	1	1/5/2017 2:57 PM
Percent Moisture	Method: ASTM-D2216							Analyst: ASP
Percent Moisture	31		1.0	1.0	1.0	wt%	1 '	12/27/2016 11:30 AM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection E	Date:	12/11/2016 10:30:00 AM
Project:	Guam Samples			
Lab ID:	1612702-006	Matrix:	Restricted Soi	il
Client Sample ID:	MAD-DU06			

Analysis	Result (Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		N	lethod:	SW7580				Analyst: DS
White Phosphorus	1.1	U	0.43	1.1	1.6	µg/Kg-dry	1	1/5/2017 3:17 PM
Surr: Tripropylphosphate	39.7			27-112		%Rec	1	1/5/2017 3:17 PM
Percent Moisture		Method: ASTM-D2216						
Percent Moisture	32		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

	rofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 12:30:00 PM
Project: Gu	am Samples			
Lab ID: 16	12702-007	Matrix:	Restricted So	il
Client Sample ID: MA	AD-DU07			

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Μ	lethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.42	1.0	1.6	µg/Kg-dry	1	1/5/2017 4:15 PM
Surr: Tripropylphosphate	46.3			27-112		%Rec	1	1/5/2017 4:15 PM
Percent Moisture		Μ	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	31		1.0	1.0	1.0	wt%	1 '	12/27/2016 11:30 AM

RTI Laboratories, Inc. - QC SUMMARY REPORT

WO#: 1612702

Client:	Euro	ofins Lancaster L	aboratorie	es, Inc.										
Project:	Gua	m Samples									Batch ID:	4208	2	
Sample ID:	MB-42082	Samp Type:	MBLK	٦	Fest Code:	SW_7580S	Units:	µg/Kg	Prep Date	e:	1/4/2017 Ru	nNo:	91424	
Client ID:	PBS	Batch ID:	42082	٢	FestNo:	SW7580			Analysis	Date:	1/5/2017 Se	qNo:	1787143	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
White Phosp	horus		0.72	1.1										U
Surr: Tripr	opylphosphate		69		250.0			27.6	27	112				
Sample ID:	LCS-42082	Samp Type:	LCS	٦	Fest Code:	SW_7580S	Units:	µg/Kg	Prep Date	ə:	1/4/2017 Ru	nNo:	91424	
Client ID:	LCSS	Batch ID:	42082	٦	FestNo:	SW7580			Analysis	Date:	1/5/2017 Se	qNo:	1787144	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
White Phosp	horus		9.1	1.1	10.73	0		84.4	75	125				
Surr: Tripr	opylphosphate		100		249.9			41.6	27	112				
Sample ID:	LCSD-42082	Samp Type:	LCSD	٦	Fest Code:	SW_7580S	Units:	µg/Kg	Prep Date	ə:	1/4/2017 Ru	nNo:	91424	
Client ID:	LCSS02	Batch ID:	42082	٦	FestNo:	SW7580			Analysis	Date:	1/5/2017 Se	qNo:	1787145	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
White Phosp	horus		9.6	1.1	10.73	0		89.5	75	125	9.055	5.81	25	
Surr: Tripr	opylphosphate		110		249.9			43.1	27	112		0	25	

RTI Laboratories, Inc. - QC SUMMARY REPORT

WO#: 1612702

Client:	Eurofins	Lancaster L	aboratorie	s, Inc.										
Project:	Guam Sa	amples									Batch ID:	R912	282	
Sample ID:	1612665-001ADUP	Samp Type:	DUP	-	Fest Code:	PMOIST	Units:	wt%	Prep Date	ə:	12/27/2016 Ru	nNo:	91282	
Client ID:	222222	Batch ID:	R91282	-	TestNo:	D2216			Analysis	Date:	12/27/2016 Se	qNo:	1784653	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
Percent Mois	sture		19	1.0							17.30	7.17	20	
Sample ID:	1612702-007ADUP	Samp Type:	DUP	-	Fest Code:	PMOIST	Units:	wt%	Prep Date	э:	12/27/2016 Ru	nNo:	91282	
Client ID:	MAD-DU07LR1	Batch ID:	R91282	-	FestNo:	D2216			Analysis	Date:	12/27/2016 Se	qNo:	1784666	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
Percent Mois	sture		32	1.0							31.20	2.33	20	

				CLIENT SAMPLE NO.
			Г	MAD-DU01
Lab Name: <u>RTI Laborato</u>	<u>ories, Inc.</u> (Contract:		
Lab Code: <u>GLEN01</u>	ClientID:	EUR02	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	Restricted S	<u>soil</u>	Lab Sample ID	: <u>1612702-001A</u>
Sample wt/vol:	<u>40.05q</u>		Lab File ID	: <u>517npd13.D</u>
Level: (low/med)	LOW		Date Collected	: <u>12/11/2016 11:05 AM</u>
% Moisture: <u>33.9869</u>	<u>.</u>		Date Received	: <u>12/22/2016 2:02 PM</u>
Extract Volume: <u>10000</u>	<u>)(µl)</u>		Date Analyzed	: <u>1/5/2017 1:40 PM</u>
Seq Number: <u>178714</u>	<u>6</u>		Dilution Factor	: <u>1.00</u>
GC Column: <u>OP Pestic</u>	<u>ides</u>		Batch ID	: <u>42082</u>
Column ID: <u>OPPes</u>	ticides(mm)			
CAS NO. COMPOU	ND	CONC. U	JNITS: µg/Kg-dry Q	DL LOD LOQ
7723-14-0 White Phos	sphorus		1.1 U	0.44 1.1 1.6

SW7580

Form I

			CLIENT SAMPLE NO.
			MAD-DU02
Lab Name: <u>RTI Laborat</u>	ories, Inc. Contract:		
Lab Code: <u>GLEN01</u>	ClientID: <u>EUR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	Restricted Soil	Lab Sample ID:	<u>1612702-002A</u>
Sample wt/vol:	<u>40.02q</u>	Lab File ID:	<u>517npd14.D</u>
Level: (low/med)	LOW	Date Collected:	<u>12/11/2016 1:30 PM</u>
% Moisture: <u>30.298</u>	<u>6</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Extract Volume: <u>1000</u>	<u>)0(µl)</u>	Date Analyzed:	<u>1/5/2017 1:59 PM</u>
Seq Number: <u>17871</u>	<u>47</u>	Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pestic</u>	<u>cides</u>	Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	sticides(mm)		
CAS NO. COMPO	UND CONC.	UNITS: µg/Kg-dry Q	DL LOD LOQ
7723-14-0 White Ph	osphorus	1.0 U	0.42 1.0 1.5

			CLIENT SAMPLE NO.
			MAD-DU03
Lab Name: <u>RTI Laborat</u>	cories, Inc. Contract:		
Lab Code: <u>GLEN01</u>	ClientID: <u>EUR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	Restricted Soil	Lab Sample ID:	<u>1612702-003A</u>
Sample wt/vol:	<u>40.089</u>	Lab File ID:	<u>517npd15.D</u>
Level: (low/med)	LOW	Date Collected:	<u>12/11/2016 3:20 PM</u>
% Moisture: <u>21.514</u>	<u>.3</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Extract Volume: <u>1000</u>	<u>00(µl)</u>	Date Analyzed:	<u>1/5/2017 2:19 PM</u>
Seq Number: <u>17871</u>	<u>48</u>	Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pesti</u>	<u>cides</u>	Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	sticides(mm)		
CAS NO. COMPO	UND CONC.	UNITS: µg/Kg-dry Q	DL LOD LOQ
7723-14-0 White Ph	osphorus	0.91 U	0.37 0.91 1.4

			CLIENT SAMPLE NO.
			MAD-DU04
Lab Name: <u>RTI Laborat</u>	<u>cories, Inc.</u> Contract:		
Lab Code: <u>GLEN01</u>	ClientID: <u>EUR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	Restricted Soil	Lab Sample ID:	<u>1612702-004A</u>
Sample wt/vol:	<u>40.06q</u>	Lab File ID:	<u>517npd16.D</u>
Level: (low/med)	LOW	Date Collected:	<u>12/11/2016 9:00 AM</u>
% Moisture: <u>29.929</u>	<u>1</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Extract Volume: <u>1000</u>	<u>00(µl)</u>	Date Analyzed:	<u>1/5/2017 2:38 PM</u>
Seq Number: <u>17871</u>	<u>49</u>	Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pesti</u>	<u>cides</u>	Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	<pre>sticides(mm)</pre>		
CAS NO. COMPO	UND CONC.	UNITS: µg/Kg-dry Q	DL LOD LOQ
7723-14-0 White Ph	osphorus	1.0 U	0.41 1.0 1.5

			CLIENT SAMPLE NO.
			MAD-DU05
Lab Name: <u>RTI Laborat</u>	cories, Inc. Contract:		
Lab Code: <u>GLEN01</u>	ClientID: <u>EUR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	Restricted Soil	Lab Sample ID:	<u>1612702-005A</u>
Sample wt/vol:	<u>40q</u>	Lab File ID:	<u>517npd17.D</u>
Level: (low/med)	LOW	Date Collected:	<u>12/11/2016 2:15 PM</u>
% Moisture: <u>30.525</u>	8	Date Received:	<u>12/22/2016 2:02 PM</u>
Extract Volume: <u>1000</u>	<u>00(µl)</u>	Date Analyzed:	<u>1/5/2017 2:57 PM</u>
Seq Number: <u>17871</u>	<u>50</u>	Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pesti</u>	<u>cides</u>	Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	<u>sticides(mm)</u>		
		INITE: ug/Kg dag- 0	
CAS NO. COMPO		UNITS: µg/Kg-dry Q	DL LOD LOQ
7723-14-0 White Ph	osphorus	1.0 U	0.42 1.0 1.5
7723-14-0 White Ph	osphorus	1.0 U	0.42 1.0 1.5

				CLIENT SAMPLE NO.
			Г	MAD-DU06
Lab Name: <u>RTI Laborat</u>	<u>cories, Inc.</u> Con	ntract:		
Lab Code: <u>GLEN01</u>	ClientID: <u>EU</u>	<u>JR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	<u>Restricted Soi</u>	<u>11</u>	Lab Sample ID:	<u>1612702-006A</u>
Sample wt/vol:	<u>40.03q</u>		Lab File ID:	<u>517npd18.D</u>
Level: (low/med)	LOW		Date Collected:	<u>12/11/2016 10:30 AM</u>
% Moisture: <u>32.059</u>			Date Received:	<u>12/22/2016 2:02 PM</u>
Extract Volume: <u>1000</u>	00(µl)		Date Analyzed:	<u>1/5/2017 3:17 PM</u>
Seq Number: <u>17871</u>	51		Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pestic</u>	<u>cides</u>		Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	<u>sticides(mm)</u>			
CAS NO. COMPO	UND	CONC	NITS: µg/Kg-dry Q	DL LOD LOO
				2
7723-14-0 White Ph	osphorus		1.1 U	0.43 1.1 1.6

			CLIENT SAMPLE NO.
			MAD-DU07
Lab Name: <u>RTI Laborat</u>	cories, Inc. Contract:		
Lab Code: <u>GLEN01</u>	ClientID: <u>EUR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	<u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-007A</u>
Sample wt/vol:	<u>40.02q</u>	Lab File ID:	<u>517npd21.D</u>
Level: (low/med)	LOW	Date Collected:	<u>12/11/2016 12:30 PM</u>
% Moisture: <u>31.200</u>	<u>7</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Extract Volume: <u>1000</u>	<u>00(µl)</u>	Date Analyzed:	<u>1/5/2017 4:15 PM</u>
Seq Number: <u>17871</u>	<u>54</u>	Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pesti</u>	<u>cides</u>	Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	sticides(mm)		
CAS NO. COMPO	UND CONC.	UNITS: µg/Kg-dry Q	DL LOD LOQ
7723-14-0 White Ph	osphorus	1.0 U	0.42 1.0 1.6

Form	Ι

CLIENT SAMPLE NO.

				MB-42082
Lab Name: <u>RTI Laborat</u>	<u>ories, Inc.</u>	Contract:		
Lab Code: <u>GLEN01</u>	ClientID:	EUR02	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	<u>Solid</u>		Lab Sample I	D: <u>MB-42082</u>
Sample wt/vol:	<u>40q</u>		Lab File I	D: <u>517npd10.D</u>
Level: (low/med)	LOW		Date Collecte	ed:
% Moisture:		<u>N/A</u>	Date Receive	ed:
Extract Volume: <u>1000</u>	0(µl)		Date Analyze	ed: <u>1/5/2017 12:42 PM</u>
Seq Number: <u>178714</u>	<u>13</u>		Dilution Facto	or: <u>1.00</u>
GC Column: <u>OP Pestic</u>	<u>cides</u>		Batch I	D: <u>42082</u>
Column ID: <u>OPPe</u>	sticides(mm)			
CAS NO. COMPO	UND	COI	NC. UNITS: µg/Kg	Q DL LOD LOQ
7723-14-0 White Pho	osphorus		0.72	U 0.29 0.72 1.1

				CLIENT SAMPLE NO.
				LCS-42082
Lab Name: <u>RTI Laborat</u>	<u>cories, Inc.</u>	Contract		
Lab Code: <u>GLEN01</u>	ClientID:	<u>EUR02</u>	SAS No.:	SDG No.: <u>1612702</u>
Matrix:	<u>Solid</u>		Lab Sample ID:	LCS-42082
Sample wt/vol:	<u>40.01q</u>		Lab File ID:	<u>517npd11.D</u>
Level: (low/med)	LOW		Date Collected:	
% Moisture:		<u>N/A</u>	Date Received:	
Extract Volume: <u>1000</u>	<u>00(µl)</u>		Date Analyzed:	<u>1/5/2017 1:02 PM</u>
Seq Number: <u>17871</u>	44		Dilution Factor:	<u>1.00</u>
GC Column: <u>OP Pesti</u>	<u>cides</u>		Batch ID:	<u>42082</u>
Column ID: <u>OPPe</u>	<u>sticides(mm)</u>	-		
CAS NO. COMPO	UND		CONC. UNITS: µg/Kg Q	DL LOD LOQ
7723-14-0 White Ph	osphorus		9.1	0.29 0.71 1.1

						CLIENT S	AMPI	E NO.
						LCSD-	-420	82
Lab Name: <u>RTI Laborator</u>	<u>ries, Inc.</u>	Contract	:					
Lab Code: <u>GLEN01</u> (ClientID:	EUR02	SAS N	o.:		SDG No	.:	<u>1612702</u>
Matrix: <u>S</u>	<u>Solid</u>		1	Lab Sample	ID:	<u>LCSD-4208</u>	2	
Sample wt/vol: <u>4</u>	<u>40.01q</u>			Lab File	ID:	<u>517npd12.</u>	D	
Level: (low/med) <u>I</u>	LOW		Da	ate Collect	ed:			
<pre>% Moisture:</pre>		<u>N/A</u>	I	Date Receiv	ved:			
Extract Volume: <u>10000</u>	<u>(µl)</u>		I	Date Analyz	zed:	1/5/2017	1:21	PM
Seq Number: <u>1787145</u>	<u>.</u>		Di	lution Fact	or:	1.00		
GC Column: <u>OP Pesticio</u>	des			Batch	ID:	<u>42082</u>		
Column ID: <u>OPPest</u>	cicides(mm)							
CAS NO. COMPOUN	1D		CONC. UNI	ΓS: μg/Kg	Q	DL]	TOD	LOQ
7723-14-0 White Phose	phorus			9.6		0.29	0.7	1 1.1

FORM II B

SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	<u>RTI Laboratories,</u> <u>Inc.</u>	Contract: <u>EUR02</u>		
Lab Code:	<u>GLEN01</u>	Client No: <u>EUR02</u>		
SAS No.:		SDG No.: <u>1612702</u>	Level(low/med):]	low
GC Column(1): <u>OP Pesticides</u>	ID: <u>OPPesticides(mm)</u>		
GC Column(2):	ID: <u>(mm)</u>		

	Client SAMPLE NO.	TOT OUT	SMC #
01	MB-42082	0	27.6
02	LCS-42082	0	41.6
03	LCSD-42082	0	43.1
04	MAD-DU01	0	33.2
05	MAD-DU02	0	29.3
06	MAD-DU03	0	37.3
07	MAD-DU04	0	38.3
08	MAD-DU05	0	39.9
09	MAD-DU06	0	39.7
10	MAD-DU07	0	46.3

QC Limit

SMC1

27-112

Column to be used to flag recovery values

=Tripropyl phosphate

* Values outside of contract required QC limits

FORM II

FORM III

SYSTEM MONITORING SPIKE/DUPLICATE RECOVERY

<u>RTI Laborat</u>	ories,	Contract:	EUR02								
Inc.											
<u>GLEN01</u>	ClientID:	EUR02	SAS	No.:		SDG No.	: <u>16127</u>	02			
LCSD-42082		Level:(lo	w/med)	LOW							
OMPOUND	SPIKE ADDED Units (µg/Kg)	SAMPLE CONC. Units (µg/Kg)	LCS CONC. Units (µg/Kg)	LCS % REC #	QC LIMITS REC	SPIKE ADDED Units (μg/Kg)	LCSD CONC. Units (µg/Kg)	LCSD % REC #	% RPD #	QC LI RPD	IMITS REC
	11	0	9.1	84.4	75-125	11	9.6	89.5	5.81	25	75-125
	Inc. GLEN01 LCSD-42082 OMPOUND	GLEN01 ClientID: LCSD-42082 SPIKE ADDED Units Up(Kg) (µg/Kg)	Inc. GLEN01 ClientID: EUR02 LCSD-42082 Level:(low SPIKE SAMPLE ADDED CONC. Units Units (µg/Kg) (µg/Kg)	Inc. GLEN01 ClientID: EUR02 SAS LCSD-42082 Level:(low/med) SPIKE SAMPLE LCS ADDED CONC. CONC. Units Units Units (µg/Kg) (µg/Kg) (µg/Kg)	Inc. GLEN01 ClientID: EUR02 SAS No.: LCSD-42082 Level:(low/med) LOW OMPOUND SPIKE (µg/Kg) SAMPLE CONC. Units (µg/Kg) LCS CONC. Units (µg/Kg) LCS KREC #	Inc. GLEN01 ClientID: EUR02 SAS No.: LCSD-42082 Level:(low/med) LOW OMPOUND SPIKE (µg/Kg) SAMPLE CONC. Units (µg/Kg) LCS CONC. Units (µg/Kg) LCS KEC # QC LIMITS REC	Inc. SIGENO1 ClientID: EUR02 SAS No.: SDG No. LCSD-42082 Level:(low/med) LOW MPOUND SPIKE (µg/Kg) SAMPLE CONC. (µg/Kg) LCS CONC. (µg/Kg) LCS % REC # QC LIMITS REC SPIKE ADDED Units (µg/Kg)	Inc. SAS No.: SDG No.: 16127 GLEN01 ClientID: EUR02 SAS No.: SDG No.: 16127 LCSD-42082 Level:(low/med) LOW OMPOUND SPIKE Units (µg/Kg) SAMPLE CONC. Units (µg/Kg) LCS CONC. Units (µg/Kg) LCS % REC # QC LIMITS REC SPIKE ADDED Units (µg/Kg) LCSD CONC. Units (µg/Kg)	Inc. GLEN01 ClientID: EUR02 SAS No.: SDG No.: 1612702 LCSD-42082 Level:(low/med) LOW MPOUND SPIKE (µg/Kg) SAMPLE CONC. Units (µg/Kg) LCS CONC. Units (µg/Kg) LCS % REC # QC % REC # SPIKE ADDED Units (µg/Kg) LCSD CONC. Wnits (µg/Kg) LCSD % REC #	Inc. GLEN01 ClientID: EUR02 SAS No.: SDG No.: 1612702 LCSD-42082 Level:(low/med) LOW MPOUND SPIKE (µg/Kg) SAMPLE CONC. Units (µg/Kg) LCS CONC. Units (µg/Kg) LCS KEC # QC KEC # SPIKE ADDED Units (µg/Kg) LCSD % KEC # LCSD CONC. Vnits (µg/Kg) LCSD % KEC # MPLE ADDED Vnits (µg/Kg) LCSD % KEC # MPLE KEC # LCSD KEC # MPD #	Inc. GLEN01 ClientID: EUR02 SAS No.: SDG No.: 1612702 LCSD-42082 Level:(low/med) LOW MPOUND SPIKE (µg/Kg) SAMPLE CONC. Units (µg/Kg) LCS CONC. Units (µg/Kg) LCS KEC # QC KEC # SPIKE ADDED Units (µg/Kg) LCSD % KEC # LCSD CONC. Vinits (µg/Kg) LCSD % KEC # MITS ADDED Units (µg/Kg) MCSD KEC # MCSD % KEC # MCSD

Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 1 outside limits

* Values outside of QC limits

Spike Recovery: 0 out of 2 outside limits

FORM IV METHOD BLANK SUMMARY

Client SAMPLE NO.

MB-42082

Lab Name:RTI Laboratories, Inc.Contract:EUR02Lab Code:GLEN01ClientID:EUR02SAS No.:SDG No.:1612702Lab File ID:517npd10.DLab Sample ID:MB-42082Date/Time Analyzed:1/5/2017 12:42 PMInstrument ID:GC-DUAL-NPDGC Column:OP PesticidesMatrix:SColumn ID:OPPesticides(mm)Katrix:S

THIS METHOD BLANK APPLIES TO THE FOLLOWING: SAMPLES, LCS, LCSD, MS AND MSD

	CLIENT SAMPLE NO.	LAB SAMPLE ID	FILE ID	DATE ANALYZED
01	LCS-42082	LCS-42082	517npd11.D	1/5/2017 1:02 PM
02	LCSD-42082	LCSD-42082	517npd12.D	1/5/2017 1:21 PM
03	MAD-DU01	1612702-001A	517npd13.D	1/5/2017 1:40 PM
04	MAD-DU02	1612702-002A	517npd14.D	1/5/2017 1:59 PM
05	MAD-DU03	1612702-003A	517npd15.D	1/5/2017 2:19 PM
06	MAD-DU04	1612702-004A	517npd16.D	1/5/2017 2:38 PM
07	MAD-DU05	1612702-005A	517npd17.D	1/5/2017 2:57 PM
08	MAD-DU06	1612702-006A	517npd18.D	1/5/2017 3:17 PM
09	MAD-DU07	1612702-007A	517npd21.D	1/5/2017 4:15 PM
10	ZZZZZ	LOD-42082	517npd22.D	1/5/2017 4:34 PM
11	ZZZZZ	LOQ-42082	517npd23.D	1/5/2017 4:53 PM

Page 30 of 152

FORM VI

White Phosphorus in Soil INITIAL CALIBRATION DATA

Lab Name: <u>RTI Laboratories, Inc.</u> Contract:

Lab Code: <u>GLEN01</u> Workorder: <u>1612702</u>

Calibration ID: <u>91424</u>

Instrument ID: <u>GC-DUAL-NPD</u>

GC Column: <u>OPPesticides</u>

Calibration Begin Date/Time: <u>1/5/2017 10:08 AM</u> Calibration End Date/Time: <u>1/5/2017 11:44 AM</u>

Column ID: <u>OP Pesticides(mm)</u>

					LAB FII	LE ID:								
ICAL1-010517NPD <u>010517npd02.D</u> IC	AL2- 01051	7NPD <u>010517</u>	npd03.D	ICAL5-	010517NPD	010517npd	06.D	ICAL6- 010	517NPD <u>010</u>	517npd07.D	D ICAL	5- 010517m	JPD <u>010517n</u>	pd06.D
ICAL6- 010517NPD <u>010517npd07.D</u>														
COMPOUND	ICAL1- 010517NPD	ICAL2- 010517NPD			ICAL5- 010517NPD	ICAL6- 010517NPD					CF	% RSD	R 2	Curve Type
Tripropyl phosphate	922.88	907.00	1203.5	1311.8	1233.8	1287.4) 0	0	0			0.996889	QUAD
White Phosphorus	12582	14611	14027	15655	16285	16019		0	0	0			0.998300	QUAD

* Compounds with required minimum RRF and maximum %RSD values.

All other compounds must meet a minimum RRF of 0.010.

FORM VI C

White Phosphorus in Soil INITIAL CALIBRATION DATA - RETENTION TIMES

Lab Name: <u>RTI Laboratories, Inc.</u> Contract:

Lab	Code:	<u>GLEN01</u>	Workorder:	<u>1612702</u>
-----	-------	---------------	------------	----------------

Calibration ID: <u>91424</u>

Instrument ID: <u>GC-DUAL-NPD</u>

GC Column: <u>OPPesticides</u>

Column ID: <u>OP Pesticides(mm)</u>

Calibration Begin	Date/Time:	1/5/2017	10:08	AM
Calibration End	Date/Time:	1/5/2017	11:44	AM

LAB FILE ID:														
ICAL1-010517NPD <u>010517npd02.D</u> ICA	L2- 010517N	PD <u>010517</u>	npd03.D	ICAL5- ()10517NPD	010517npd	<u>)6.D</u> IC	CAL6- 0105	17NPD <u>010</u>	517npd07.I	D ICAL5	- 010517NE	D <u>010517n</u>	pd06.D
CAL6- 010517NPD 010517npd07.D														
COMPOUND	ICAL1- 010517NPD	ICAL2- 010517NPD				ICAL6- 010517NPD					Mean RT	Lower RT Limit	Upper RT Limit	
Tripropyl phosphate	12.808	12.806	12.805	12.804	12.805	12.805	0	0	0	0	12.81	12.76	12.86	
White Phosphorus	1.946	1.947	1.947	1.946	1.946	1.946	0	0	0	0	1.95	1.90	2.00	

-

FORM VII B

CONTINUING CALIBRATION CHECK

Lab Name: <u>RTI Laboratories, Inc.</u>	Contract: <u>EUR02</u>		Client No: <u>EUR02</u>
Lab Code: <u>GLEN01</u>	SAS No.:		SDG No.: <u>1612702</u>
Instrument ID: <u>GC-DUAL-NPD</u>	Lab File ID: <u>517npd08.D</u>	Sample ID:	<u>ICV- 010517NPD</u>
GC Column: <u>OP Pesticides</u>	GC Column ID: <u>OPPesticides(mm)</u>		
Cal. Begin Date: <u>1/5/2017 10:08 AM</u>	Cal. End Date: <u>1/5/2017 11:44 AM</u>		

COMPOUND	CURVE TYPE	ICAL Avg RRF	minRRF	RRF	%D	MAX %D	THEO CONC	RCVR CONC	%Drift	MAX %D²
White Phosphorus	QUAD	0	0	13780			42.9	38.0	12.3	
Tripropyl phosphate	QUAD	0	0	1255.6			2000	2000	0.633	

FORM VII B

CONTINUING CALIBRATION CHECK

Lab Name: <u>RTI Laboratories, Inc.</u>	Contract: <u>EUR02</u>		Client No: <u>EUR02</u>
Lab Code: <u>GLEN01</u>	SAS No.:		SDG No.: <u>1612702</u>
Instrument ID: <u>GC-DUAL-NPD</u>	Lab File ID: <u>517npd20.D</u>	Sample ID:	<u>CCV-010517NPD-1</u>
GC Column: <u>OP Pesticides</u>	GC Column ID: <u>OPPesticides(mm)</u>		
Cal. Begin Date: <u>1/5/2017 10:08 AM</u>	Cal. End Date: <u>1/5/2017 11:44 AM</u>		

COMPOUND	CURVE TYPE	ICAL Avg RRF	minRRF	RRF	%D	MAX %D	THEO CONC	RCVR CONC	%Drift	MAX %D²
White Phosphorus	QUAD	0	0	13384			42.9	37.0	14.8	
Tripropyl phosphate	QUAD	0	0	721.77			2000	1200	42.2	

FORM VII B

CONTINUING CALIBRATION CHECK

Lab Name: <u>RTI Laboratories, Inc.</u>	Contract: <u>EUR02</u>		Client No: <u>EUR02</u>
Lab Code: <u>GLEN01</u>	SAS No.:		SDG No.: <u>1612702</u>
Instrument ID: <u>GC-DUAL-NPD</u>	Lab File ID: <u>517npd25.D</u>	Sample ID:	<u>CCV-010517NPD-2</u>
GC Column: <u>OP Pesticides</u>	GC Column ID: <u>OPPesticides(mm)</u>		
Cal. Begin Date: <u>1/5/2017 10:08 AM</u>	Cal. End Date: <u>1/5/2017 11:44 AM</u>		

COMPOUND	CURVE TYPE	ICAL Avg RRF	minRRF	RRF	%D	MAX %D	THEO CONC	RCVR CONC	%Drift	MAX %D²
White Phosphorus	QUAD	0	0	14039			42.9	38.0	10.7	
Tripropyl phosphate	QUAD	0	0	712.03			2000	1100	42.9	

FORM VIII PEST1

PESTICIDE ANALYTICAL SEQUENCE

Lab Name:	<u>RTI Laborat</u> <u>Inc.</u>	tories,	Contra	ct: <u>EUR02</u>			
Lab Code:	GLEN01	ClientID:	EUR02	SAS N	Jo.:	SDG No.:	<u>1612702</u>
GC Column:	<u>OP Pestic</u>	ides		ID: <u>OPPesti</u>	<u>.cides(mm)</u>		
Init. Calib	. Date(s):	<u>1/5/2</u>	2017	1/5/2017	Instrument ID:	<u>GC-DUAL-NE</u>	<u>2D</u>

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES ,BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

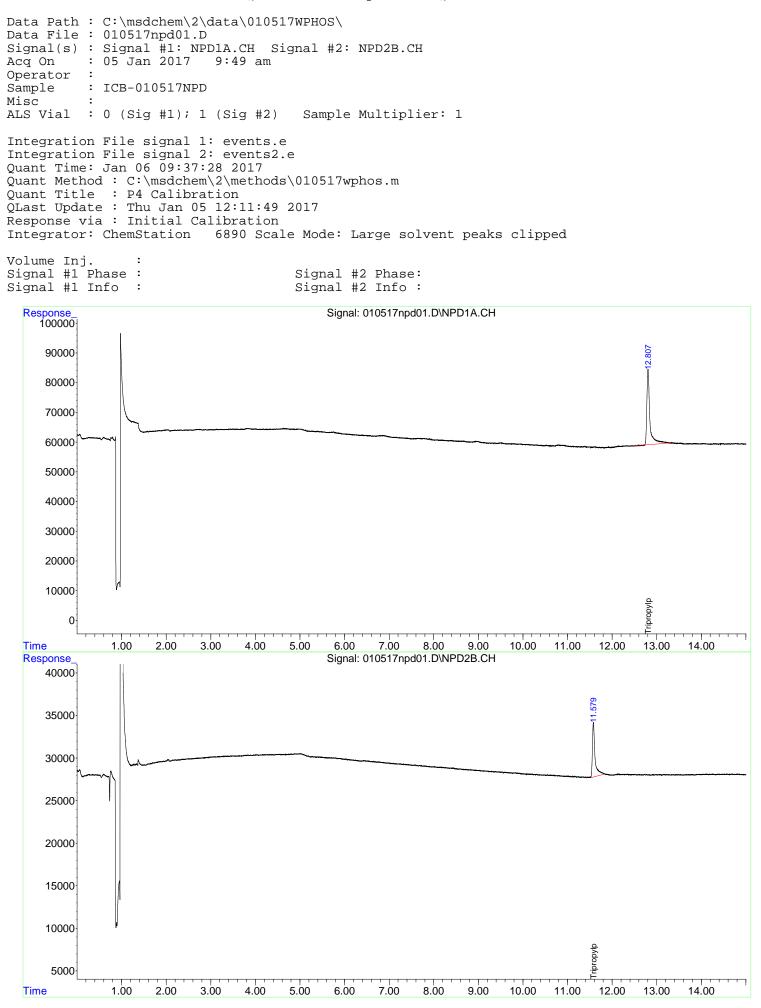
	SURROGATE RT FROM CON	TINUING CALIBRATION]				
	: 12.81						
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	RT #	RT	#
01	ICV- 010517NPD	ICV- 010517NPD	1/5/2017	12:03	12.81		
02	CRQL-010517NPD	CRQL-010517NPD	1/5/2017	12:23	12.81		
03	MB-42082	MB-42082	1/5/2017	12:42	12.82		
04	LCS-42082	LCS-42082	1/5/2017	13:02	12.81		
05	LCSD-42082	LCSD-42082	1/5/2017	13:21	12.81		
06	MAD-DU01	1612702-001A	1/5/2017	13:40	12.81		
07	MAD-DU02	1612702-002A	1/5/2017	13:59	12.81		
08	MAD-DU03	1612702-003A	1/5/2017	14:19	12.81		
09	MAD-DU04	1612702-004A	1/5/2017	14:38	12.81		
10	MAD-DU05	1612702-005A	1/5/2017	14:57	12.81		
11	MAD-DU06	1612702-006A	1/5/2017	15:17	12.81		
12	CCB-010517NPD-1	CCB-010517NPD-1	1/5/2017	15:36	12.81		
01	CCV-010517NPD-1	CCV-010517NPD-1	1/5/2017	15:55	12.81		
02	MAD-DU07	1612702-007A	1/5/2017	16:15	12.82		
03	ZZZZZ	LOD-42082	1/5/2017	16:34	12.82		
04	ZZZZZ	LOQ-42082	1/5/2017	16:53	12.81		
05	CCB-010517NPD-2	CCB-010517NPD-2	1/5/2017	17:12	12.81		
01	CCV-010517NPD-2	CCV-010517NPD-2	1/5/2017	17:32	12.81		

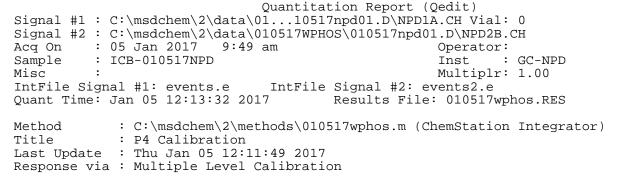
QC LIMITS

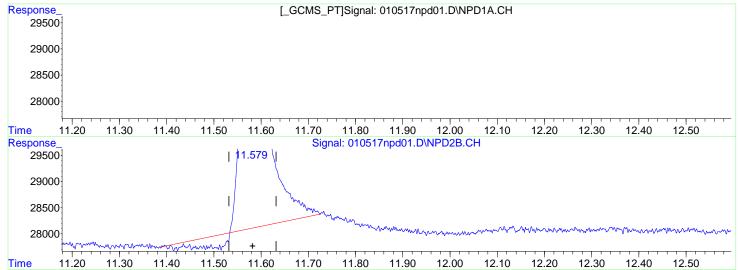
= Tripropyl phosphate

(± 0.00 MINUTES)

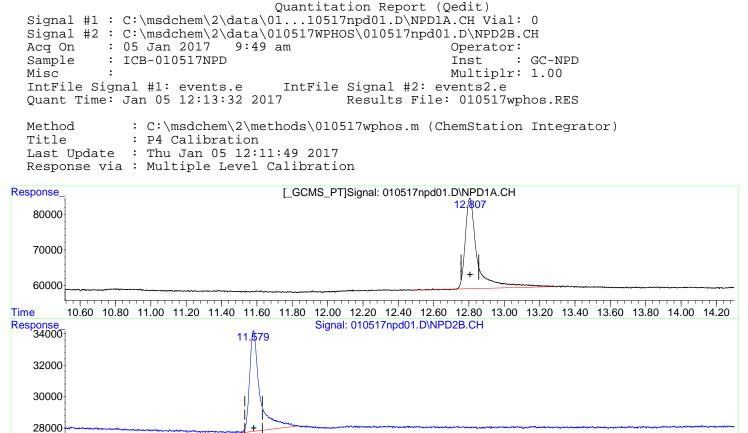
Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits.

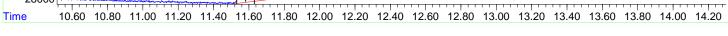

Injection Log

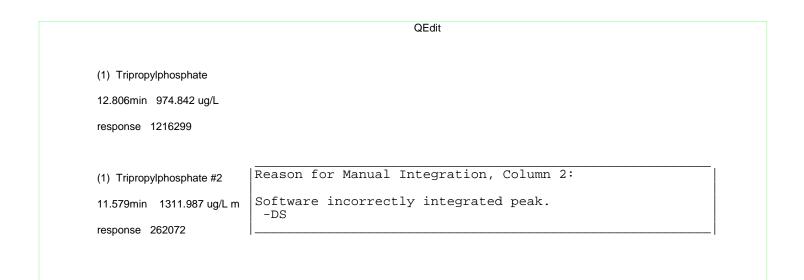

Data Directory: C:\msdchem\2\data\010517WPHOS\

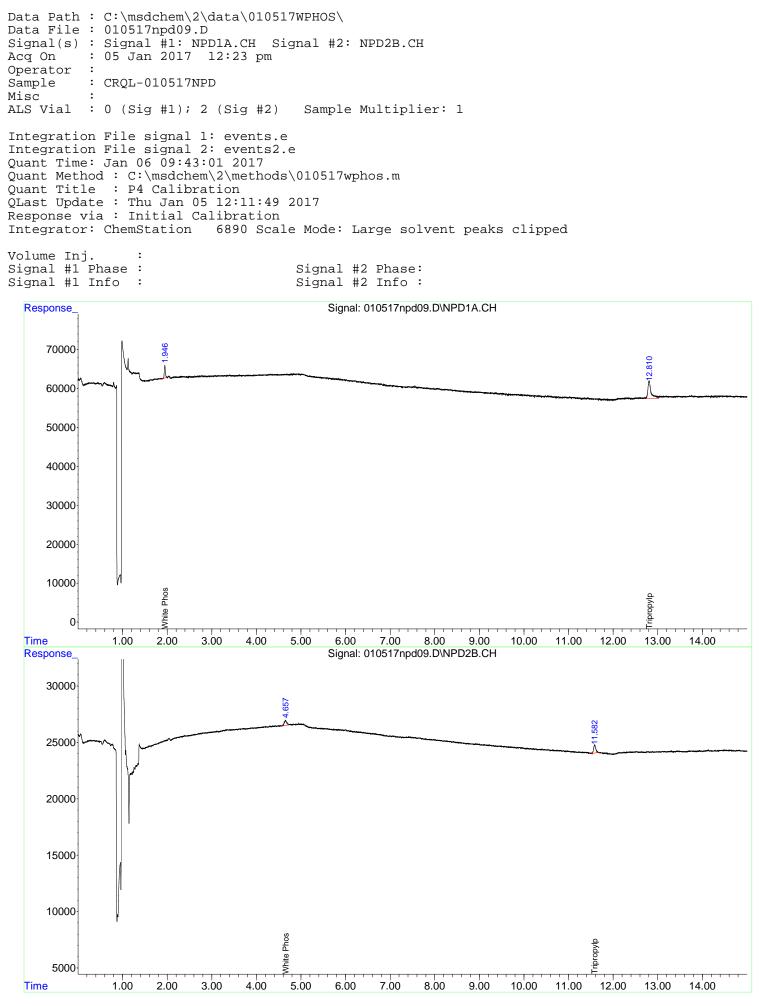

SampleName	MiscInfo	Vial	Multiplier	Injecti	on Time	e	
1) 010517npdA.D Prime102816NPD			1.000	05 Jan	2017	8:12	am
2) 010517npdB.D Prime102816NPD			1.000	05 Jan	2017	8:32	am
3) 010517npdC.D Prime102816NPD			1.000	05 Jan	2017	8:51	am
4) 010517npdE.D Prime102816NPD			1.000				am
5) 010517npdG.D Prime102816NPD			1.000	05 Jan		9:30	am
6) 010517npd01.D ICB-010517NPD			1.000				am
7) 010517npd02.D ICAL1-010517NPD			1.000	05 Jan	2017	10:08	am
8) 010517npd03.D ICAL2- 010517NPD			1.000	05 Jan			am
9) 010517npd04.D ICAL3- 010517NPD			1.000				am
10) 010517npd05.D ICAL4- 010517NPD			1.000				am
11) 010517npd06.D ICAL5- 010517NPD			1.000	05 Jan	2017	11:25	am
12) 010517npd07.D ICAL6- 010517NPD			1.000	05 Jan	2017	11:44	am
13) 010517npd08.D ICV- 010517NPD			1.000	05 Jan	2017	12:03	pm
14) 010517npd09.D CRQL-010517NPD			1.000	05 Jan	2017	12:23	pm
15) 010517npd10.D MB-42082			1.000	05 Jan	2017	12:42	pm
16) 010517npd11.D LCS-42082			1.000	05 Jan	2017	13:02	pm
17) 010517npd12.D							pm
18) 010517npd13.D 1612702-001A			1.000	05 Jan	2017	13:40	
19) 010517npd14.D 1612702-002A			1.000	05 Jan	2017	13:59	pm
20) 010517npd15.D 1612702-003A			1.000	05 Jan	2017	14:19	pm
21) 010517npd16.D 1612702-004a			1 000	05 Jan	2017	14:38	pm

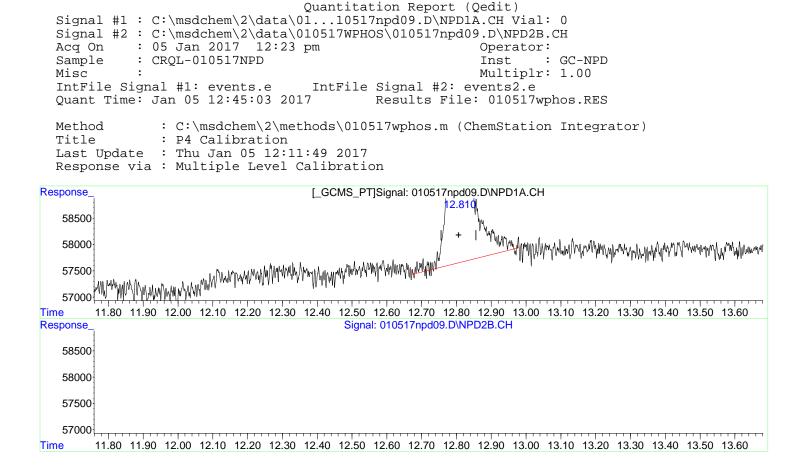
22) 010517npd17.D 1612702-005A	1.000		an 2017	14:57	pm
23) 010517npd18.D 1612702-006A	1.000		an 2017	15:17	pm
24) 010517npd19.D CCB-010517NPD-1	1.000				pm
25) 010517npd20.D CCV-010517NPD-1	1.000				pm
26) 010517npd21.D 1612702-007A	1.000	05 J	an 2017	16:15	pm
27) 010517npd22.D LOD-42082	1.000	05 J	an 2017	16:34	pm
28) 010517npd23.D LOQ-42082	1.000	05 J	an 2017	16:53	pm
29) 010517npd24.D CCB-010517NPD-2	1.000				pm
30) 010517npd25.D CCV-010517NPD-2	1.000				pm

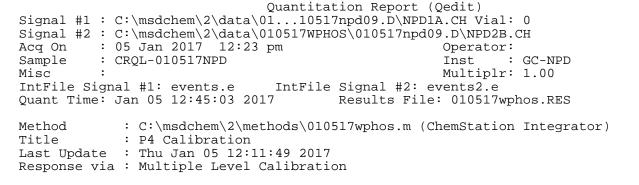

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd01.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 9:49 am Operator : Sample : ICB-010517NPD Misc : ALS Vial : 0 (Sig #1); 1 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:37:28 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80611.5791216299262072974.8421311.987m2)White Pho...0.00000N.D.N.D. -----_____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

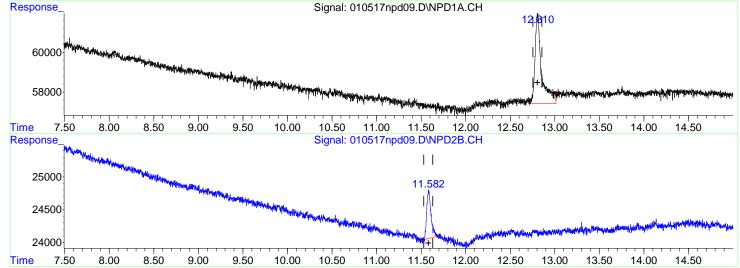


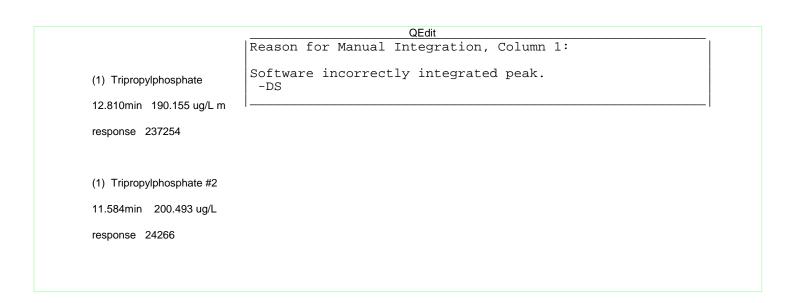


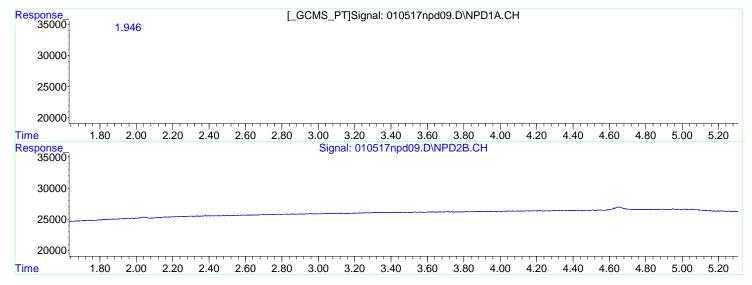


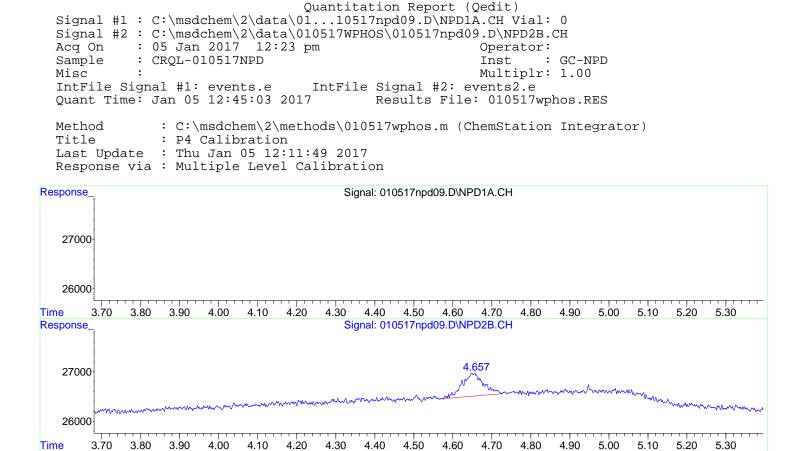




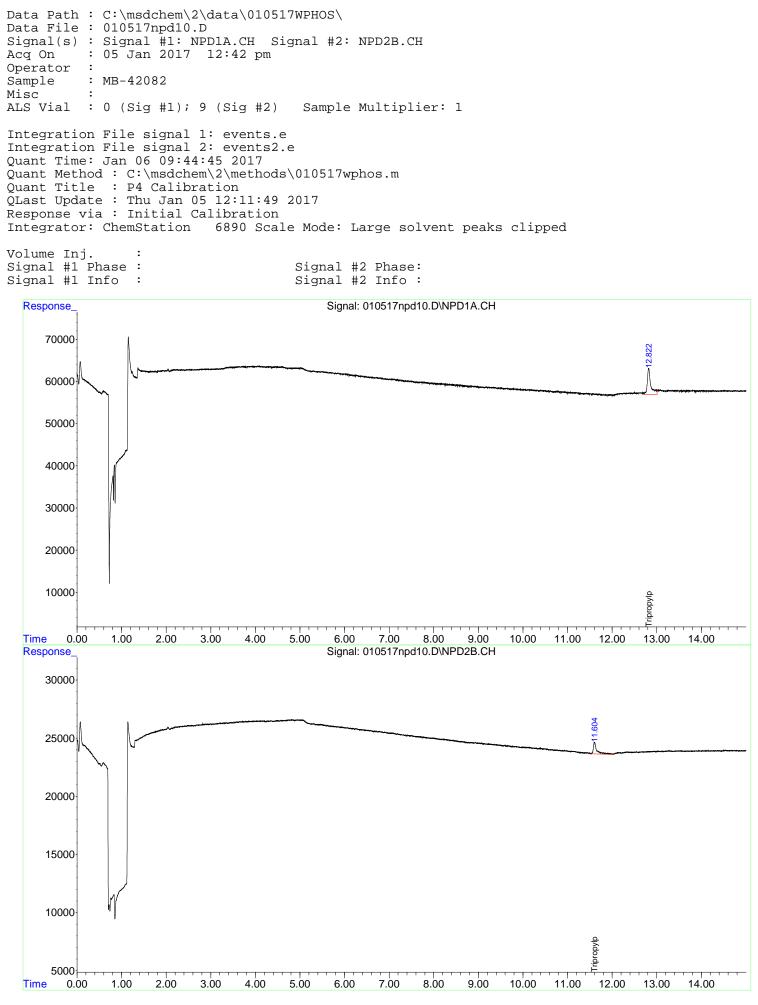

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd09.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 12:23 pm Operator : Sample : CRQL-010517NPD Misc : ALS Vial : 0 (Sig #1); 2 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:43:01 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81011.58423725424266190.155m200.4932)White Pho...1.9474.65755628175734.5374.712m _____ _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.





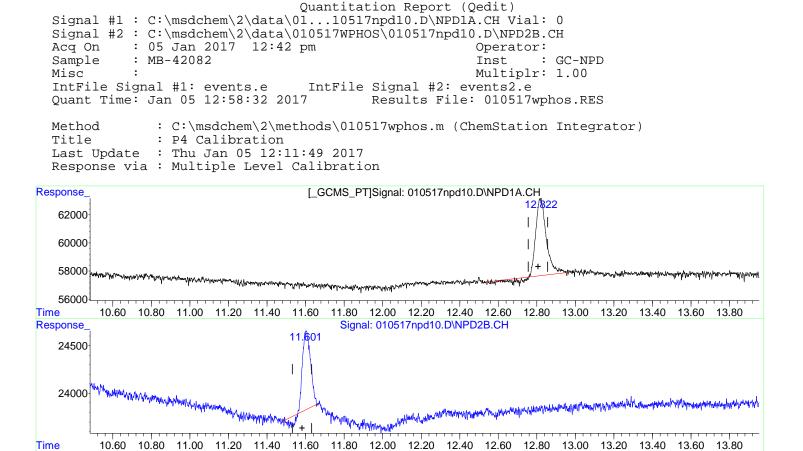


Quantitation Report (Qedit) Signal #1 : C:\msdchem\2\data\01...10517npd09.D\NPD1A.CH Vial: 0 Signal #2 : C:\msdchem\2\data\010517WPHOS\010517npd09.D\NPD2B.CH Acq On : 05 Jan 2017 12:23 pm Operator: Acq On Sample : CRQL-010517NPD : GC-NPD Inst Misc ٠ Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Jan 05 12:45:03 2017 Results File: 010517wphos.RES Method : C:\msdchem\2\methods\010517wphos.m (ChemStation Integrator) : P4 Calibration Title : Thu Jan 05 12:11:49 2017 Last Update Response via : Multiple Level Calibration

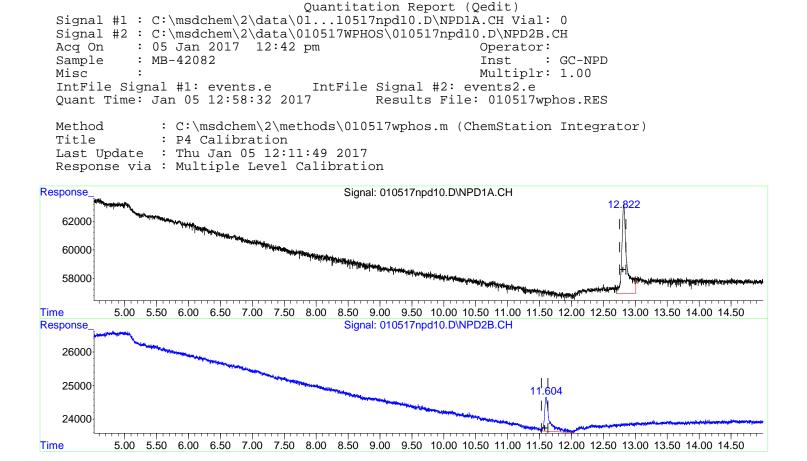

	QEdit	
(2) White Phosphorus		
1.947min 4.537		
response 55628		
	Descen for Menuel Intermetion Column 2:	
(2) White Phosphorus #2	Reason for Manual Integration, Column 2:	
(2) White Phosphorus #24.657min 4.712 m	Software did not integrate peak.	

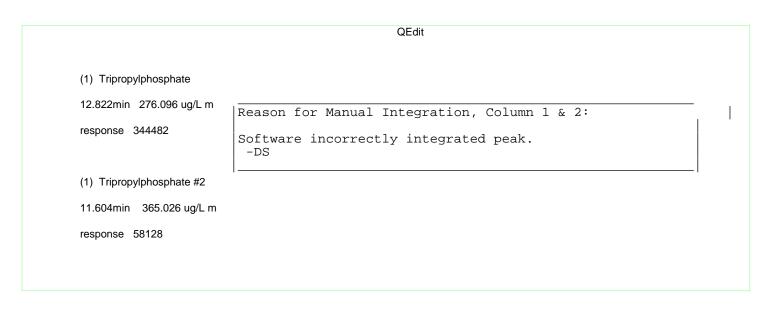
010517npd09.D 010517wphos.m Fri Jan 06 09:43:13 2017

Page 48 of 152

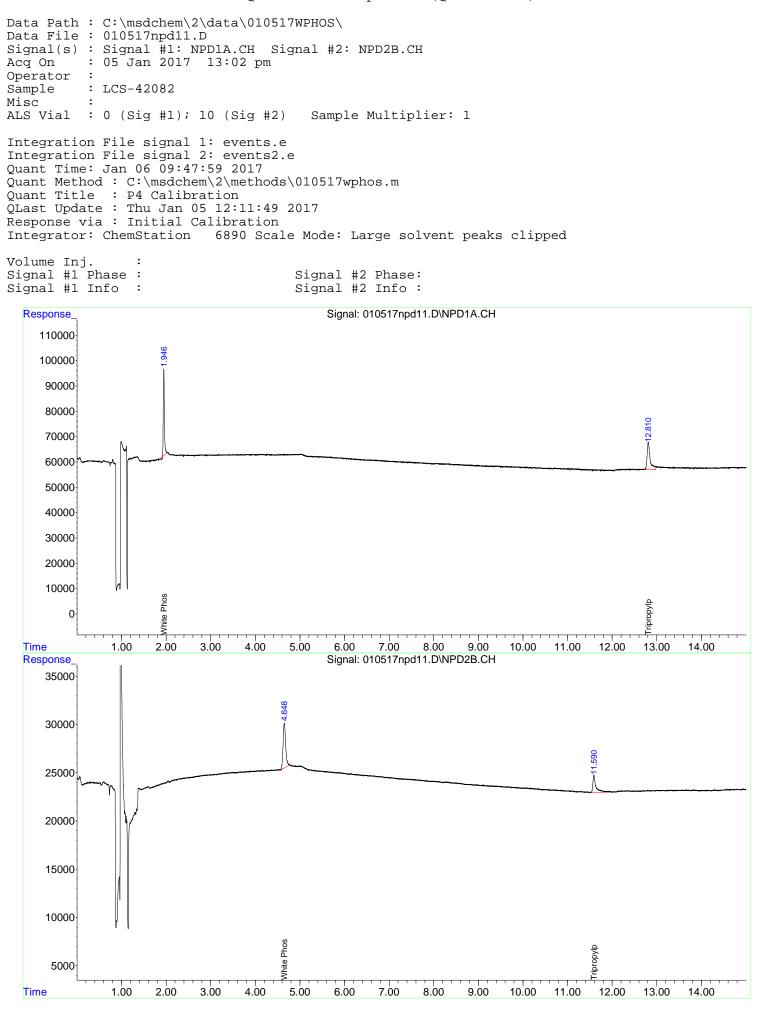

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd10.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 12:42 pm Operator : Sample : MB-42082 Misc : ALS Vial : 0 (Sig #1); 9 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:44:45 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.82211.60434448258128276.096m365.026m2)White Pho...0.00000N.D.N.D. -----_____ _ _ _ _ _ _ _ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

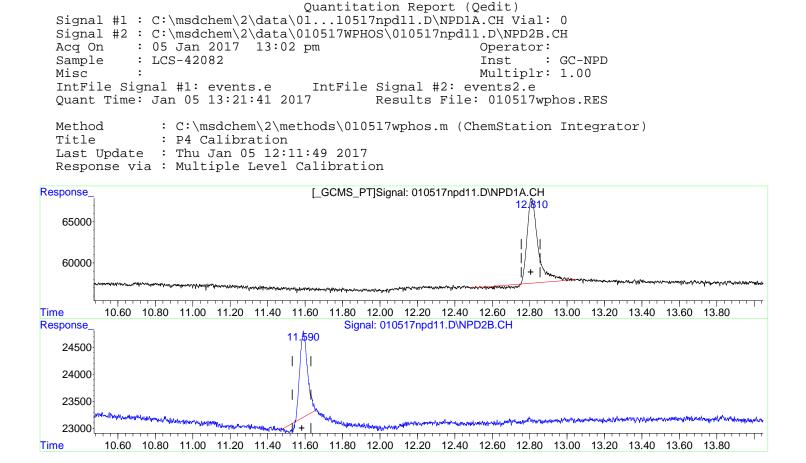
010517wphos.m Fri Jan 06 10:06:22 2017

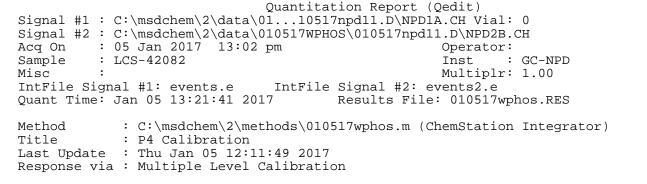


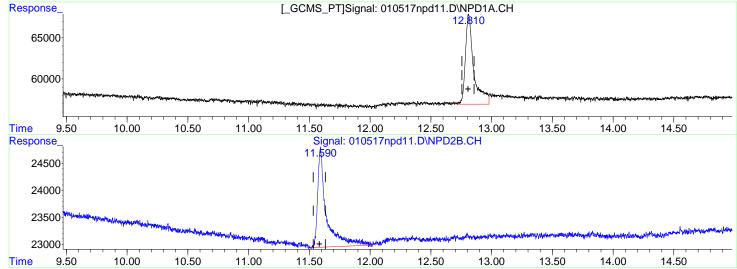

010517wphos.m Fri Jan 06 10:06:22 2017

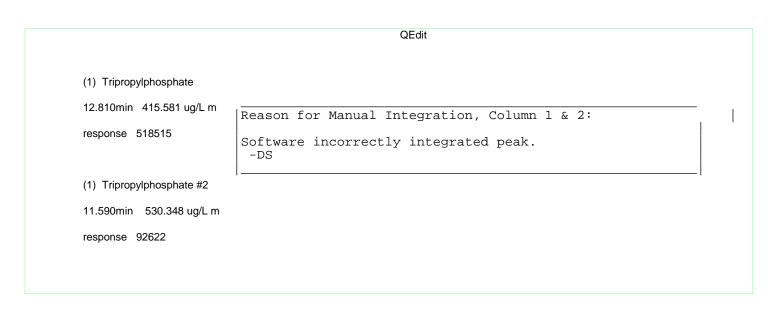
Page 50 of 152

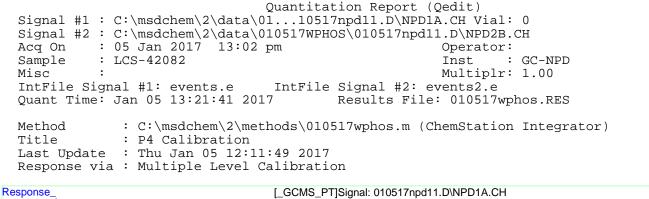


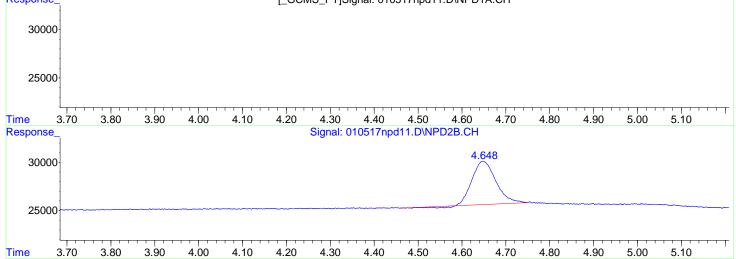


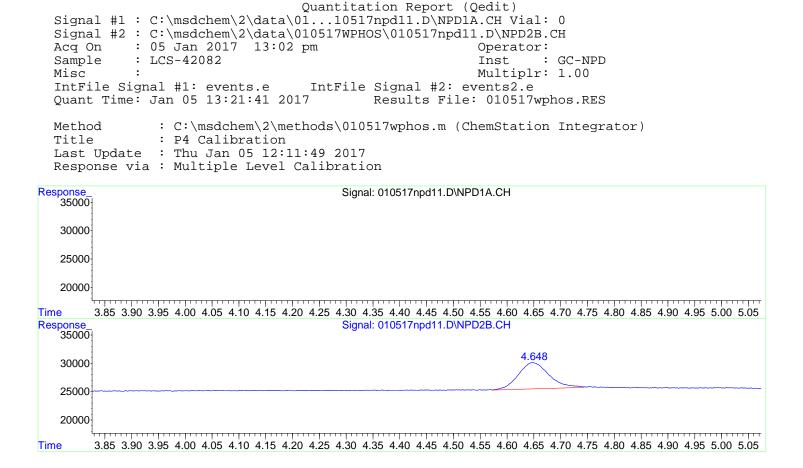


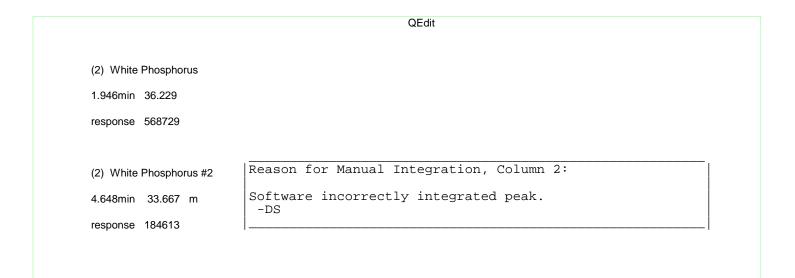

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd11.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 13:02 pm Operator : Sample : LCS-42082 Misc : ALS Vial : 0 (Sig #1); 10 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:47:59 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81011.59051851592622415.581m530.348m2)White Pho...1.9464.64856872918461336.22933.667m (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

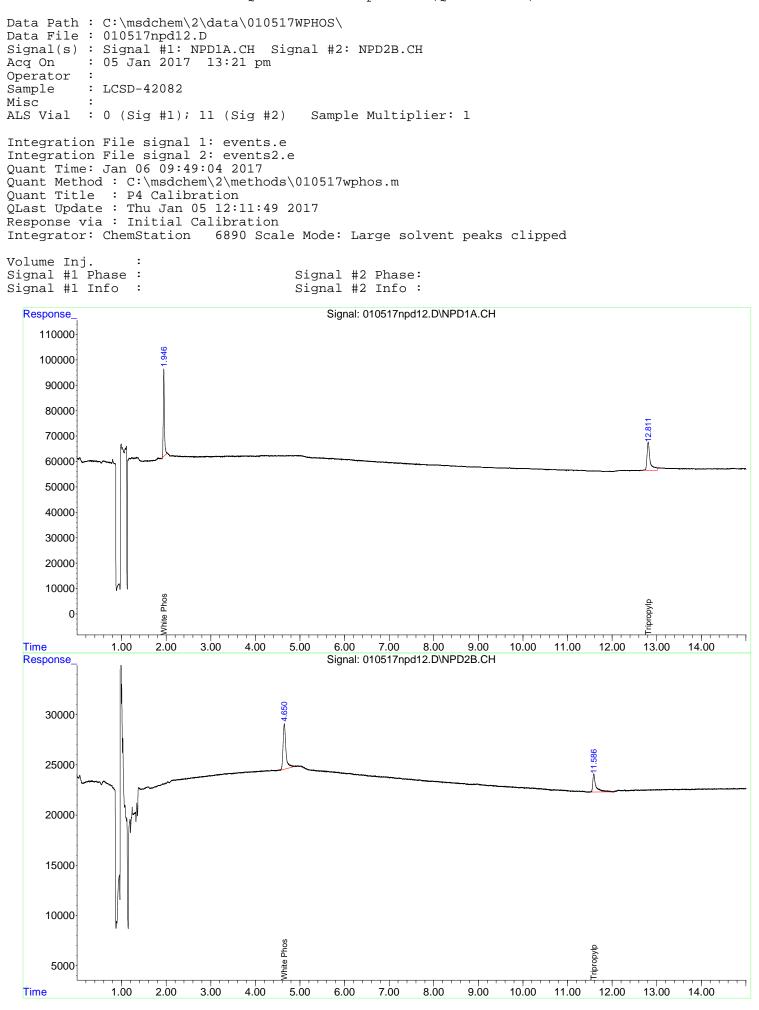


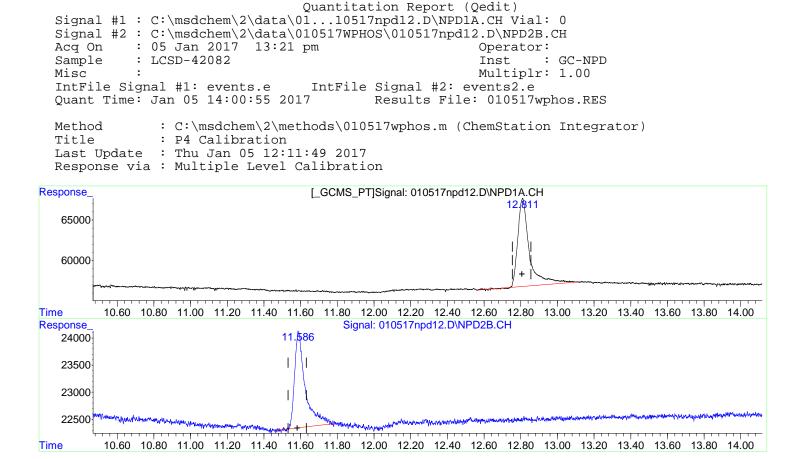




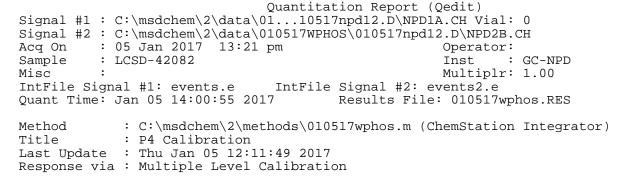


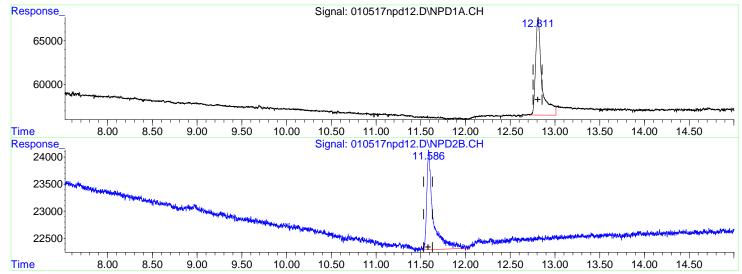

Page 56 of 152

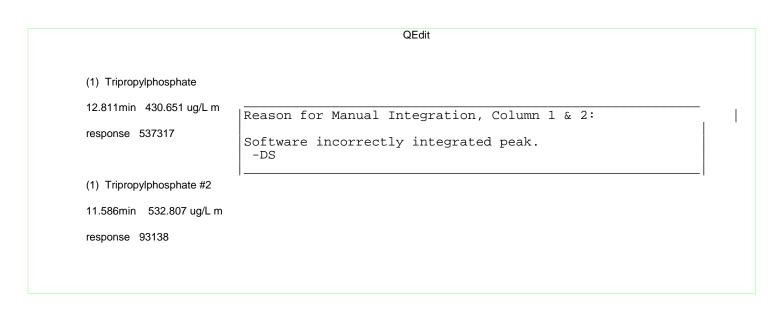


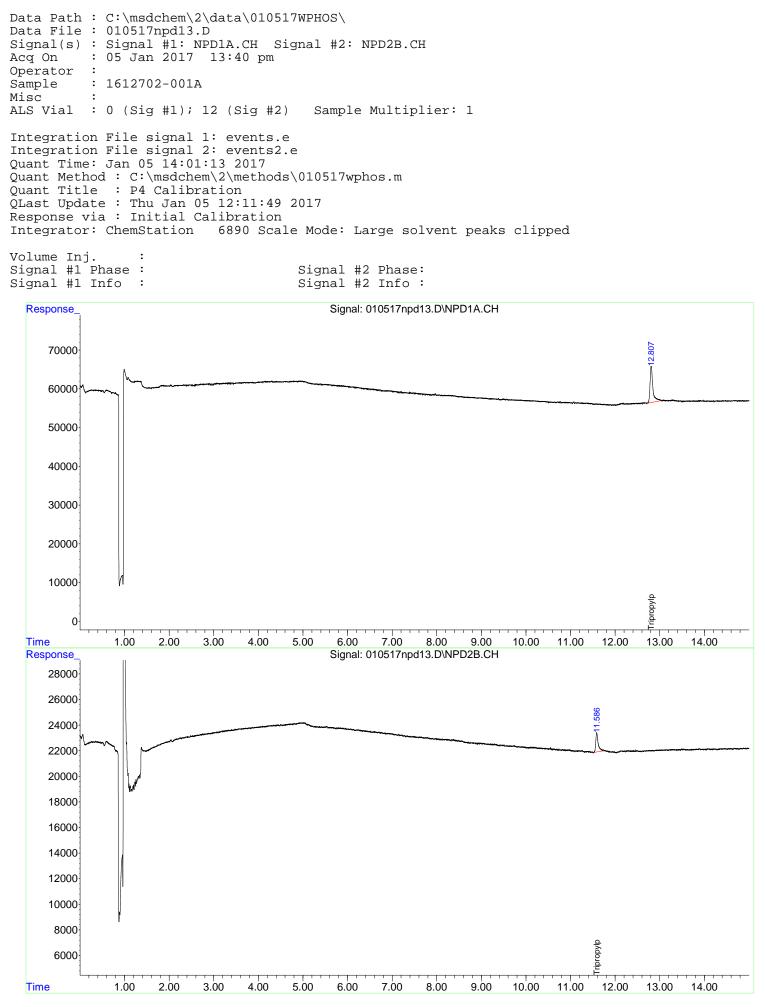

Page 58 of 152

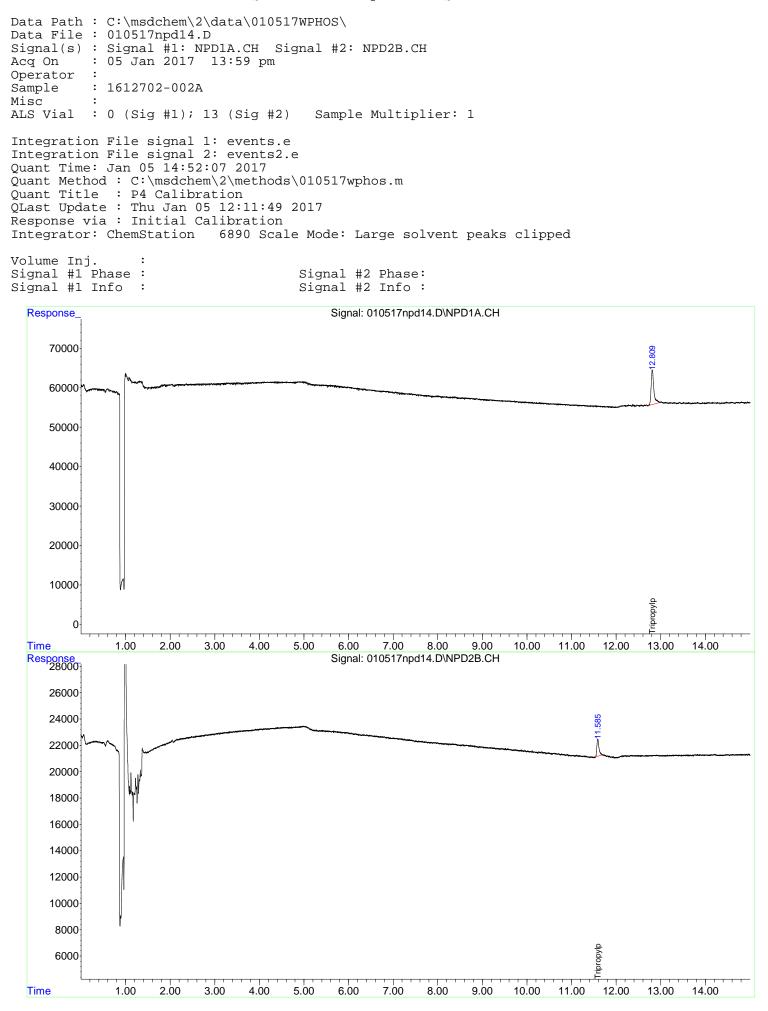
Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd12.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 13:21 pm Operator : Sample : LCSD-42082 Misc : ALS Vial : 0 (Sig #1); 11 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:49:04 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81111.58653731793138430.651m532.807m2)White Pho...1.9464.64960381120132138.39636.563 _____ _ _ _ _ _ _ _ . (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.



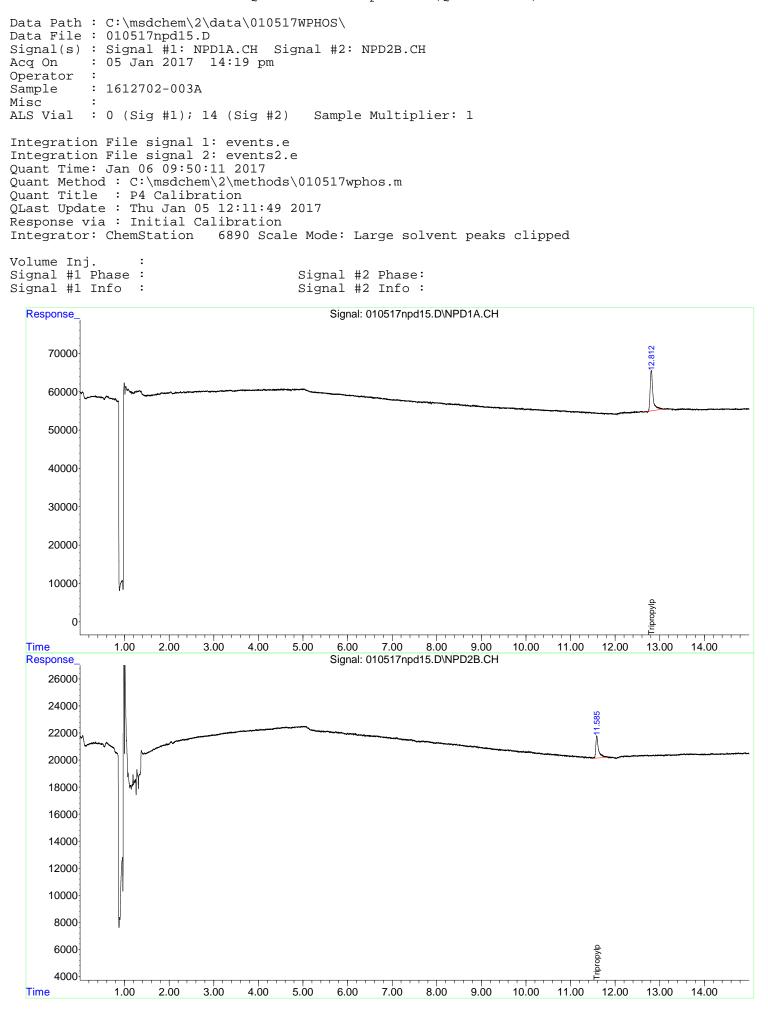

010517wphos.m Fri Jan 06 10:06:26 2017

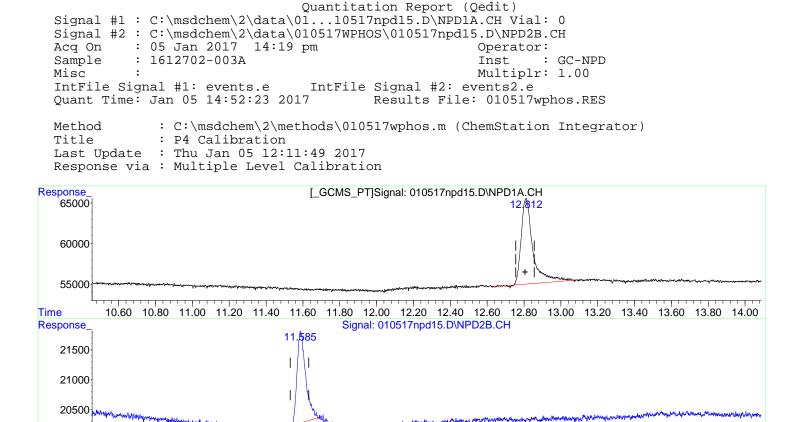

Page 60 of 152



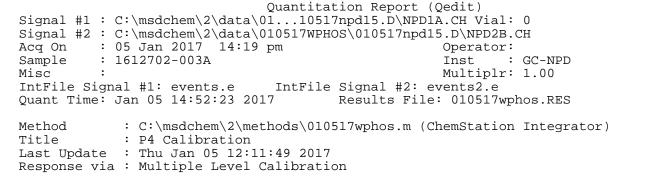

Page 62 of 152

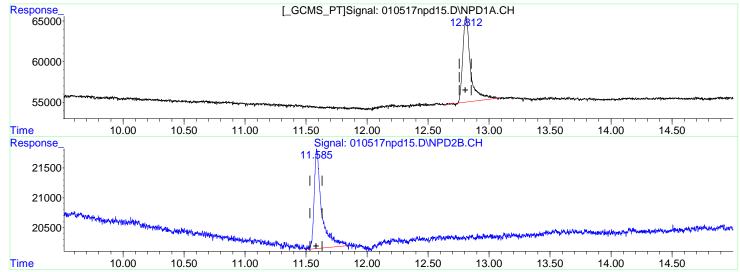
Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd13.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 13:40 pm Operator : Sample : 1612702-001A Misc : ALS Vial : 0 (Sig #1); 12 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 14:01:13 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds
 1)
 Tripropyl...
 12.810
 11.588
 413783
 56777
 331.640
 358.506

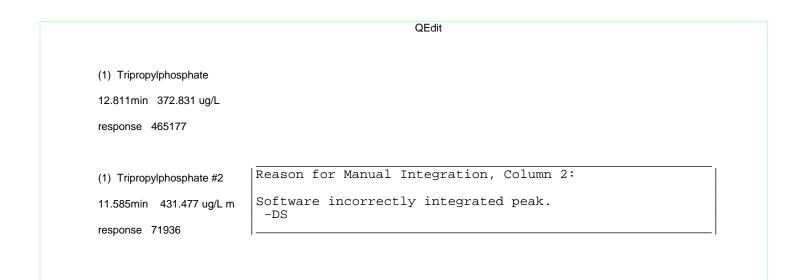

 2)
 White Pho...
 0.000
 0
 0
 N.D.
 -----(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.



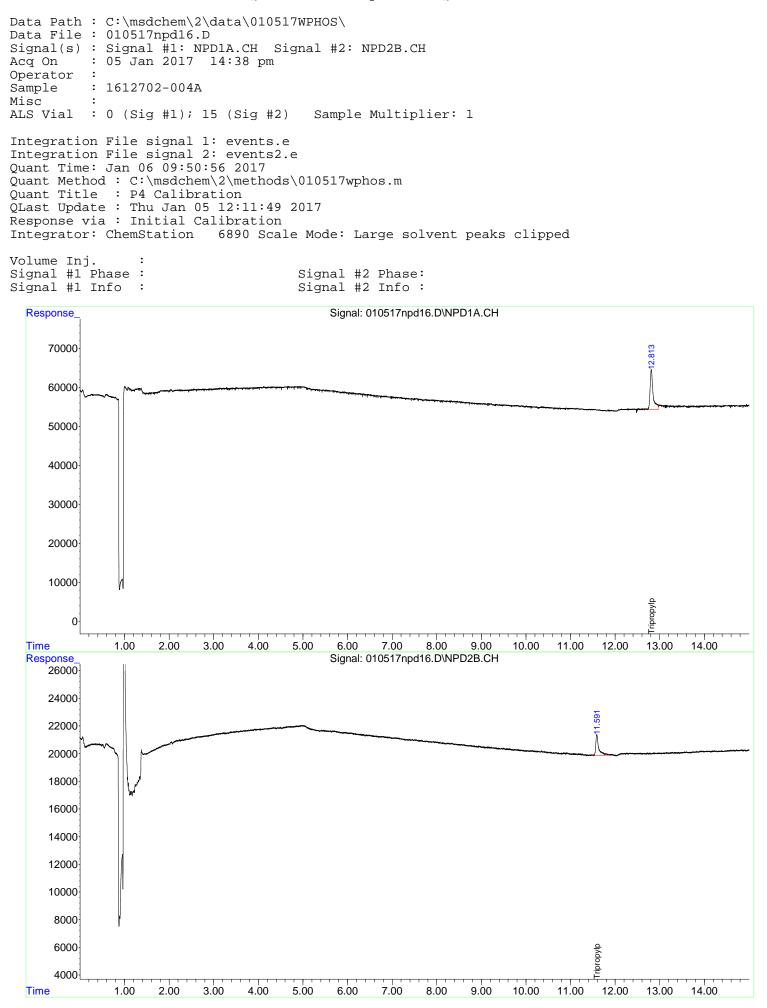
Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd14.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 13:59 pm Operator : Sample : 1612702-002A Misc : ALS Vial : 0 (Sig #1); 13 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 14:52:07 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81111.58836519443579292.697294.6112)White Pho...0.00000N.D.N.D. _____ _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.


Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd15.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 14:19 pm Operator : Sample : 1612702-003A Misc : ALS Vial : 0 (Sig #1); 14 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:50:11 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81111.58546517771936372.831431.477m2)White Pho...0.00000N.D.N.D. _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.





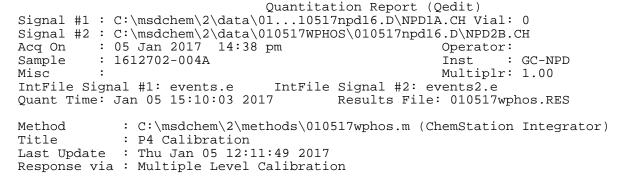
10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00

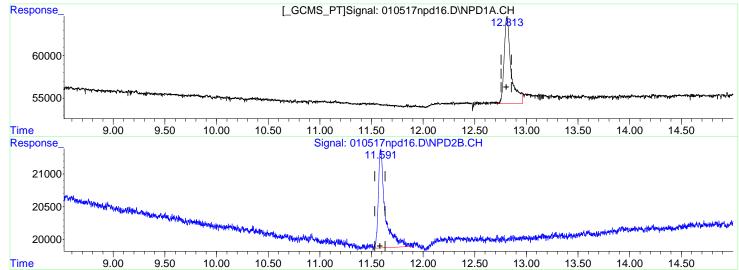


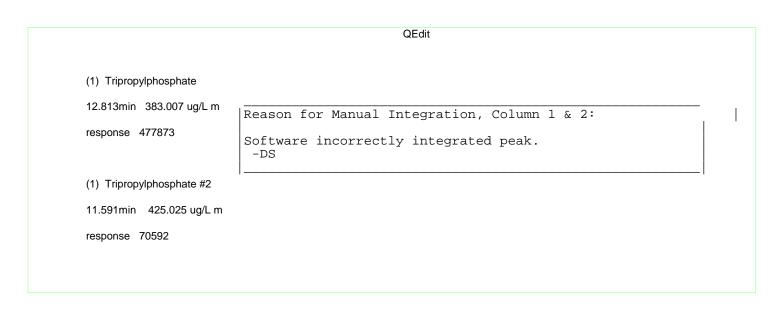
Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd16.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 14:38 pm Operator : Sample : 1612702-004A Misc : ALS Vial : 0 (Sig #1); 15 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:50:56 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81311.59147787370592383.007m425.025m2)White Pho...0.00000N.D.N.D. -----_____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

010517wphos.m Fri Jan 06 10:06:34 2017

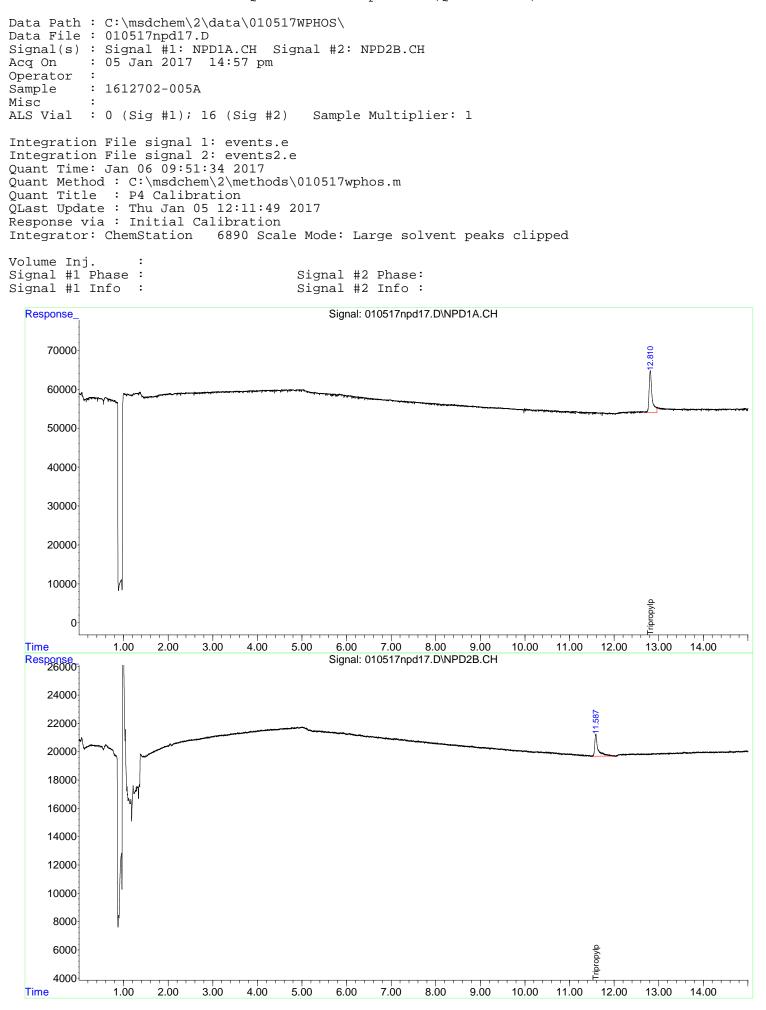
010517wphos.m Fri Jan 06 10:06:34 2017

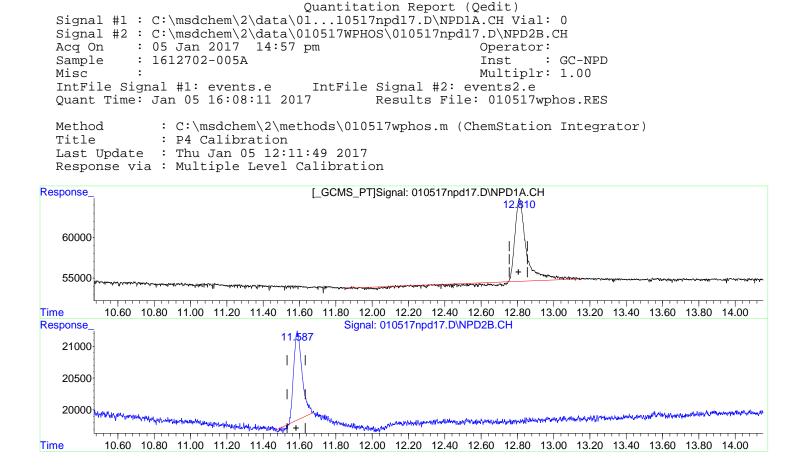

10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80

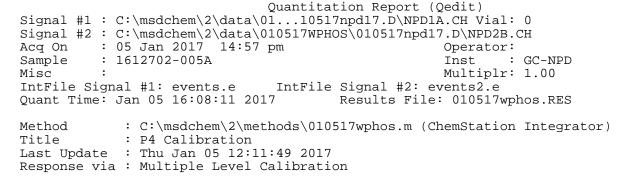

+

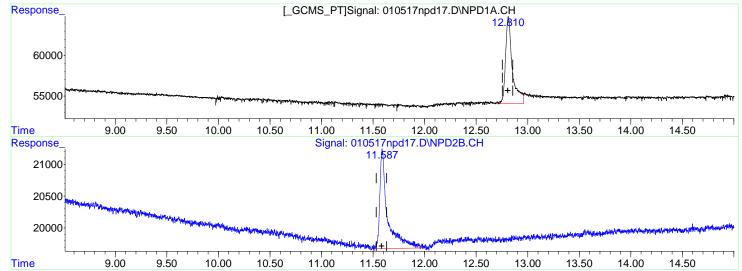

20500

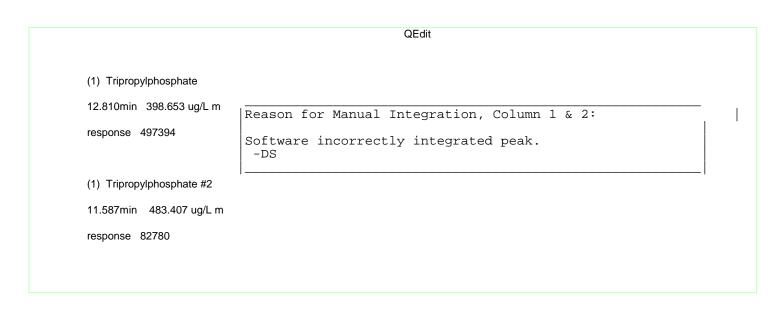
20000

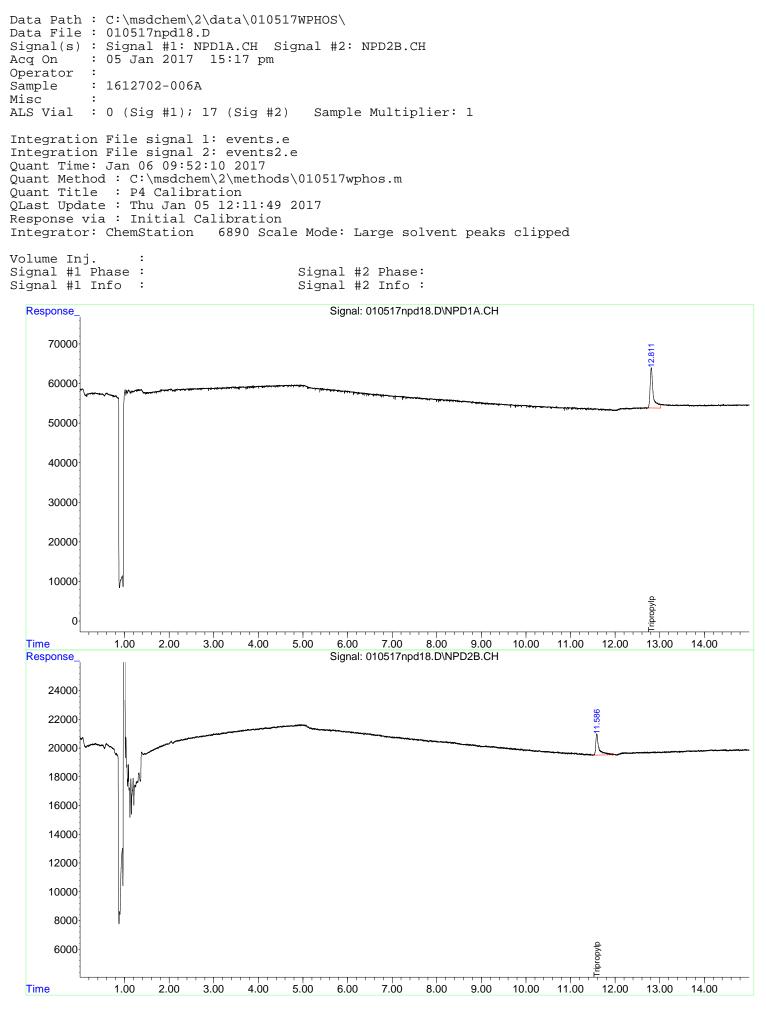


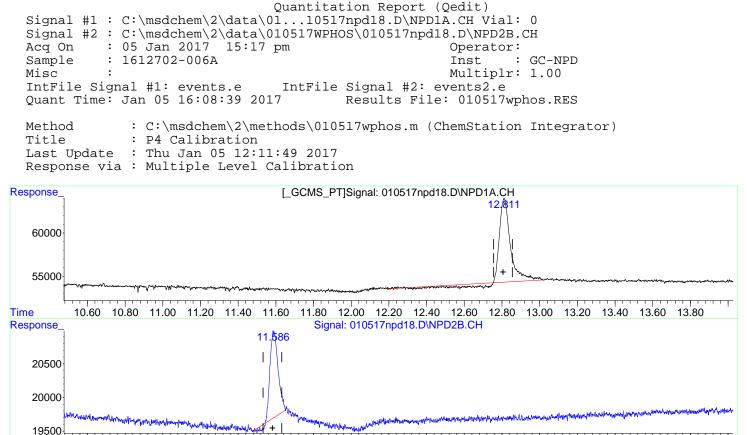


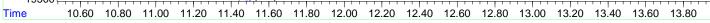



Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd17.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 14:57 pm Operator : Sample : 1612702-005A Misc : ALS Vial : 0 (Sig #1); 16 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:51:34 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81011.58749739482780398.653m483.407m2)White Pho...0.00000N.D.N.D. -----(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

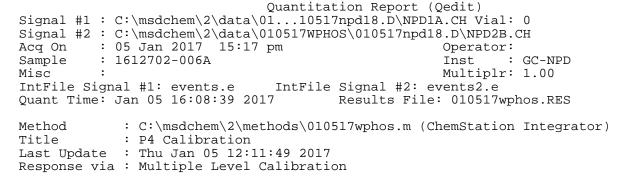


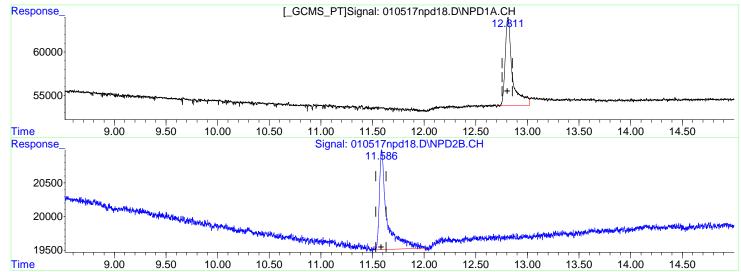


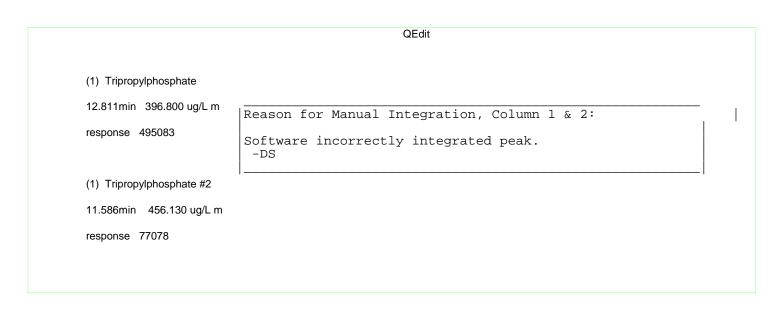


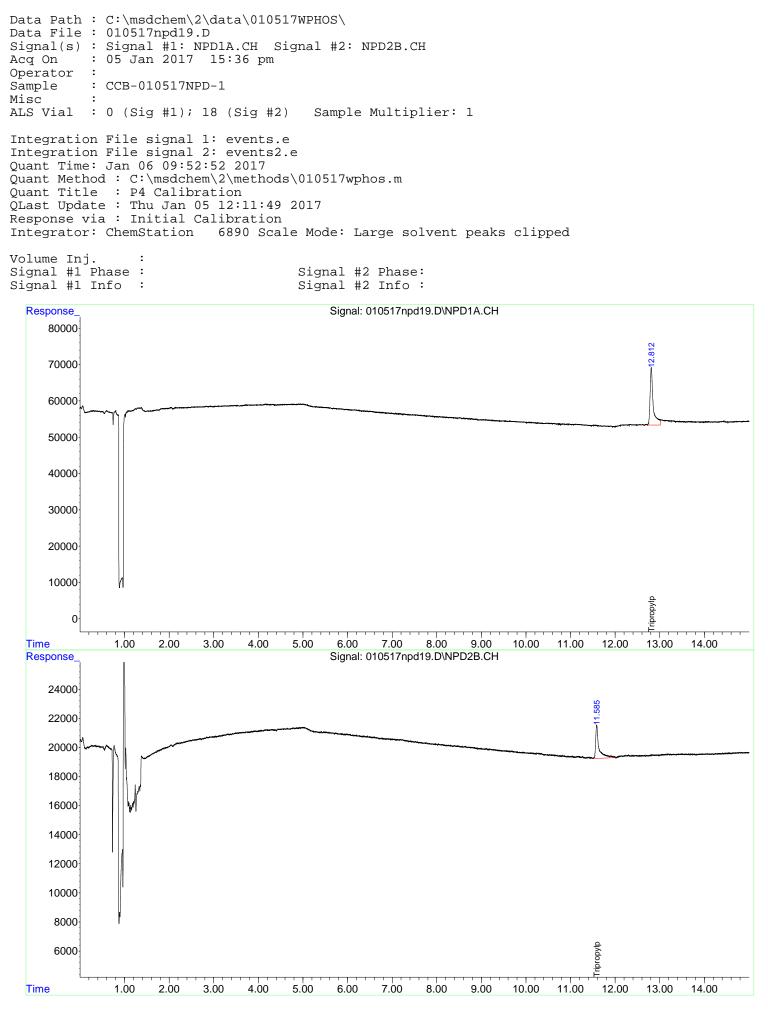


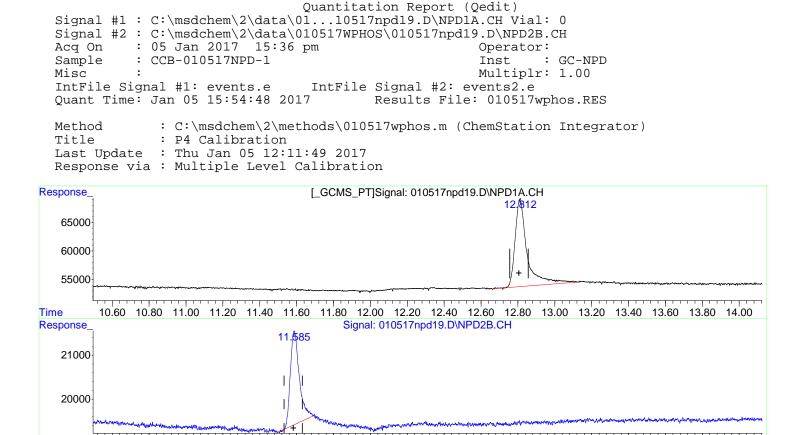
Page 78 of 152

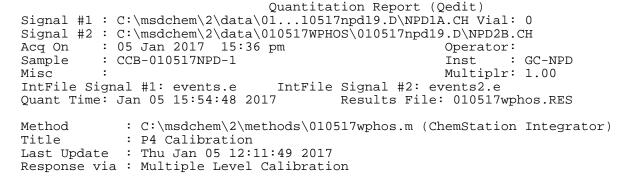

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd18.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 15:17 pm Operator : Sample : 1612702-006A Misc : ALS Vial : 0 (Sig #1); 17 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:52:10 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81111.58649508377078396.800m456.130m2)White Pho...0.00000N.D.N.D. _____ _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

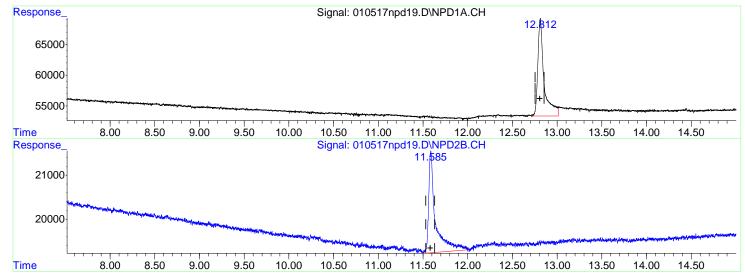


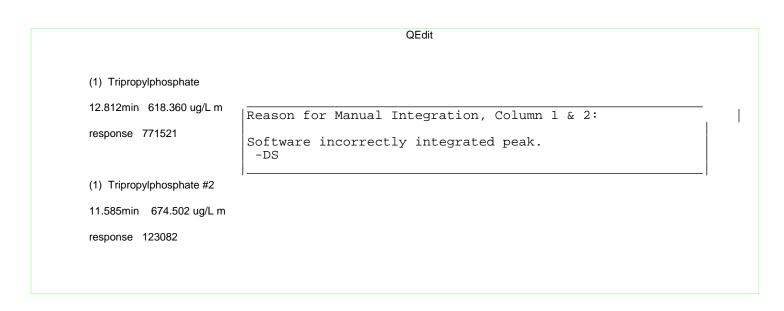




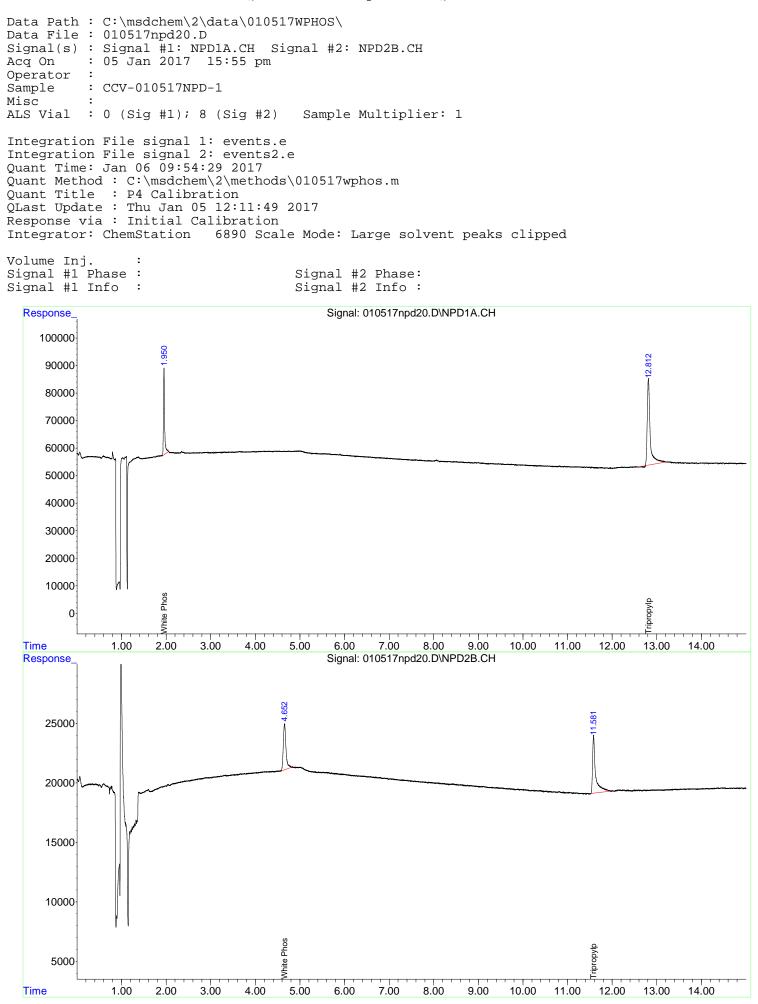



Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd19.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 15:36 pm Operator : Sample : CCB-010517NPD-1 Misc : ALS Vial : 0 (Sig #1); 18 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:52:52 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81211.585771521123082618.360m674.502m2)White Pho...0.00000N.D.N.D. -----_____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

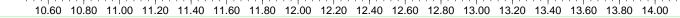




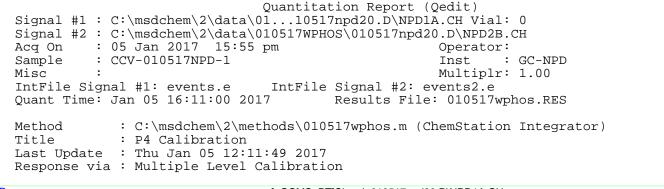
10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00

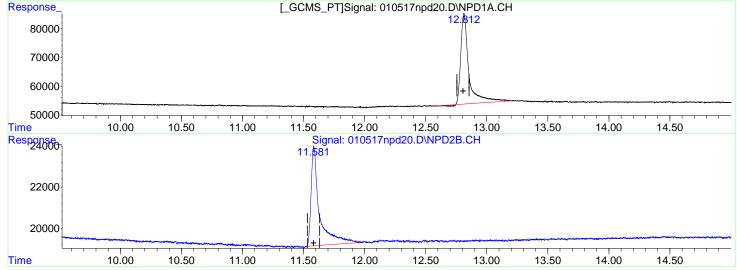

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd20.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH : 05 Jan 2017 15:55 pm Acq On Operator : Sample : CCV-010517NPD-1 Misc : ALS Vial : 0 (Sig #1); 8 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Ouant Time: Jan 06 09:54:29 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. : Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 15% Max. Rel. Area : 150% Compound Amount Calc. %Dev Area% Dev(Min) _____
 Tripropylphosphate
 2000.000
 1156.977
 42.2#
 55
 0.00

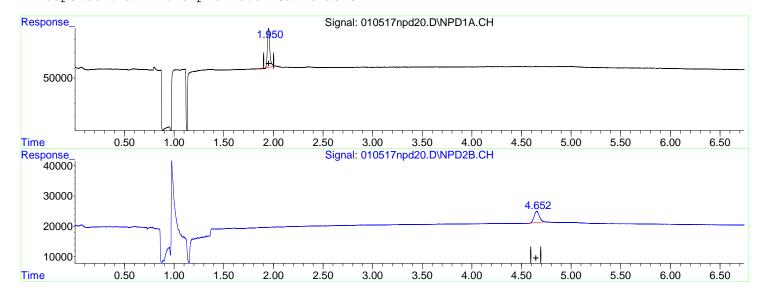
 White Phosphorus
 42.920
 36.582
 14.8
 85
 0.00
 1 14.8 85 0.00 2 White Phosphorus 42.920 36.582 Signal #2 Tripropylphosphate White Phosphorus 2000.0001175.25741.2#510.0042.92029.61631.0#700.00 1 2 Evaluate Continuing Calibration Report - Not Founds Signal #2


(#) = Out of Range

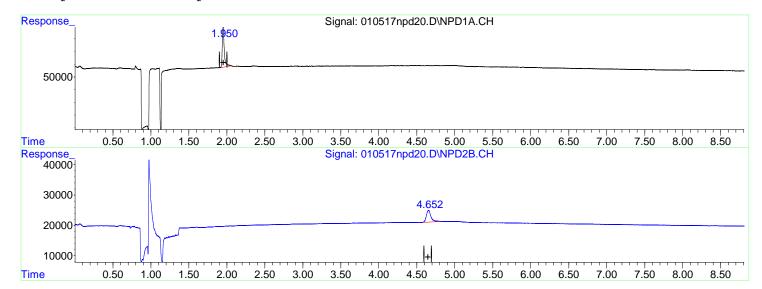
SPCC's out = 0 CCC's out = 0

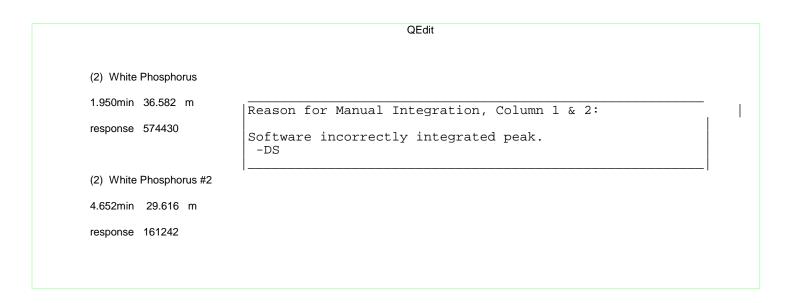

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd20.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 15:55 pm Operator : Sample : CCV-010517NPD-1 Misc : ALS Vial : 0 (Sig #1); 8 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:54:29 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81411.58114435462316721156.9771175.257m2)White Pho...1.9504.65257443016124236.582m29.616m _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

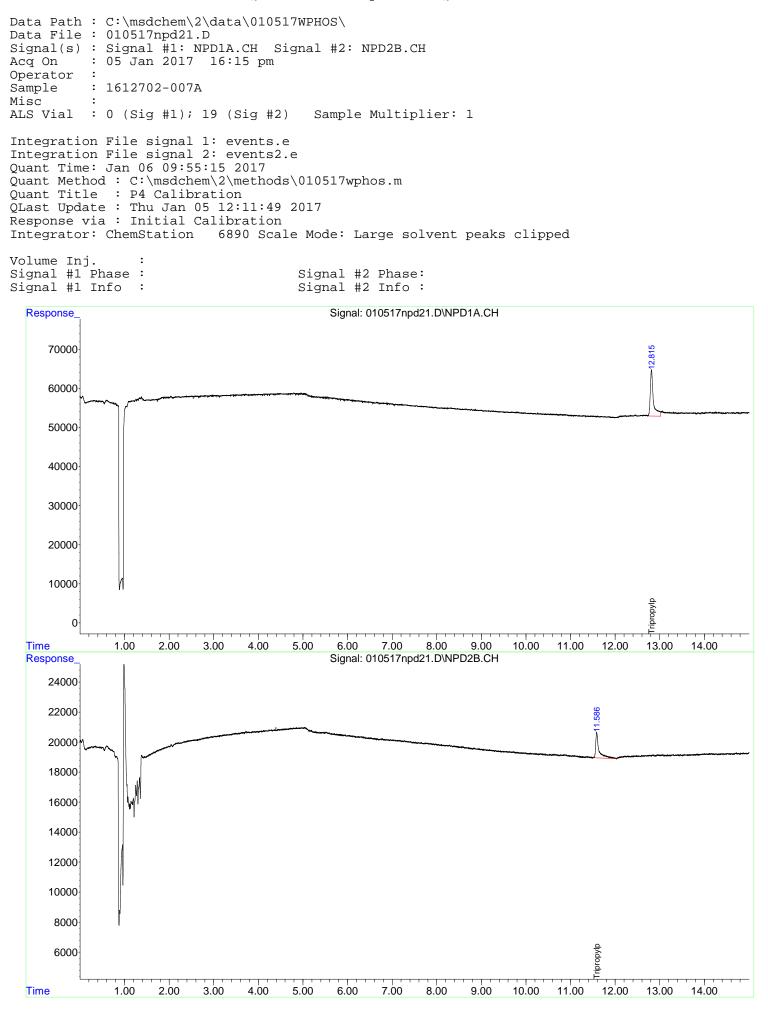


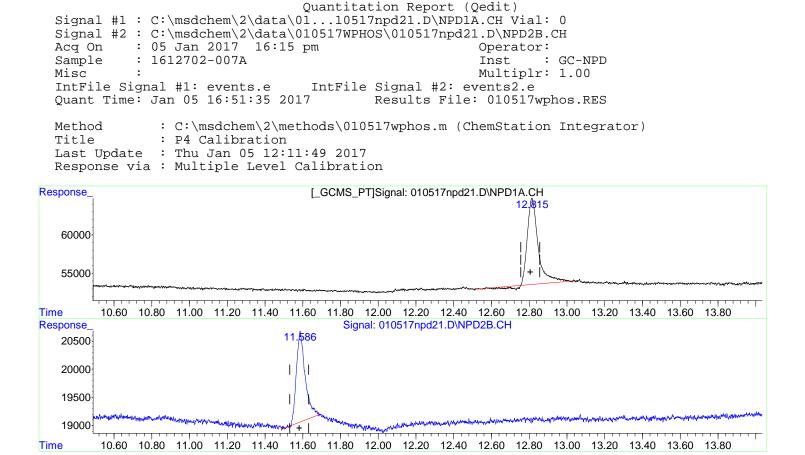


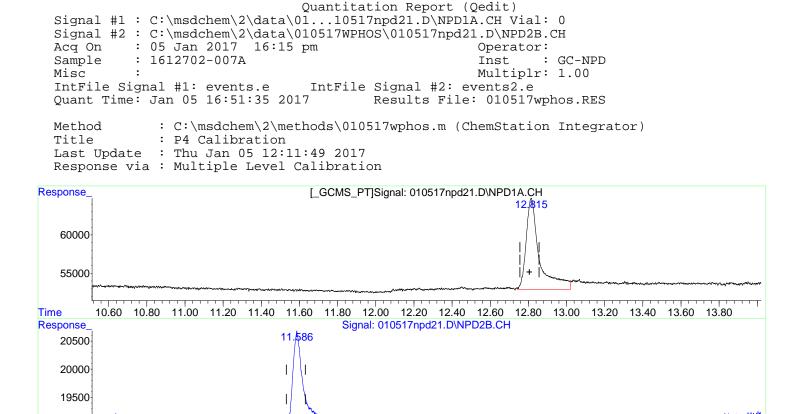
	QEdit
(1) Tripropylphosphate	
12.814min 1156.977 ug/L	
response 1443546	
(1) Tripropylphosphate #2	Reason for Manual Integration, Column 2:
11.581min 1175.257 ug/L m	Software incorrectly integrated peak.
response 231672	


Page 91 of 152

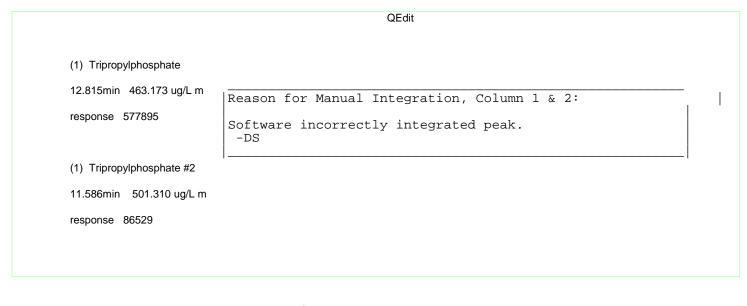

Quantitation Report (Qedit) Signal #1 : C:\msdchem\2\data\01...10517npd20.D\NPD1A.CH Vial: 0 Signal #2 : C:\msdchem\2\data\010517WPHOS\010517npd20.D\NPD2B.CH Acq On : 05 Jan 2017 15:55 pm Operator: Sample : CCV-010517NPD-1 : GC-NPD Inst Misc ٠ Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Jan 05 16:11:00 2017 Results File: 010517wphos.RES Method : C:\msdchem\2\methods\010517wphos.m (ChemStation Integrator) : P4 Calibration Title : Thu Jan 05 12:11:49 2017 Last Update Response via : Multiple Level Calibration

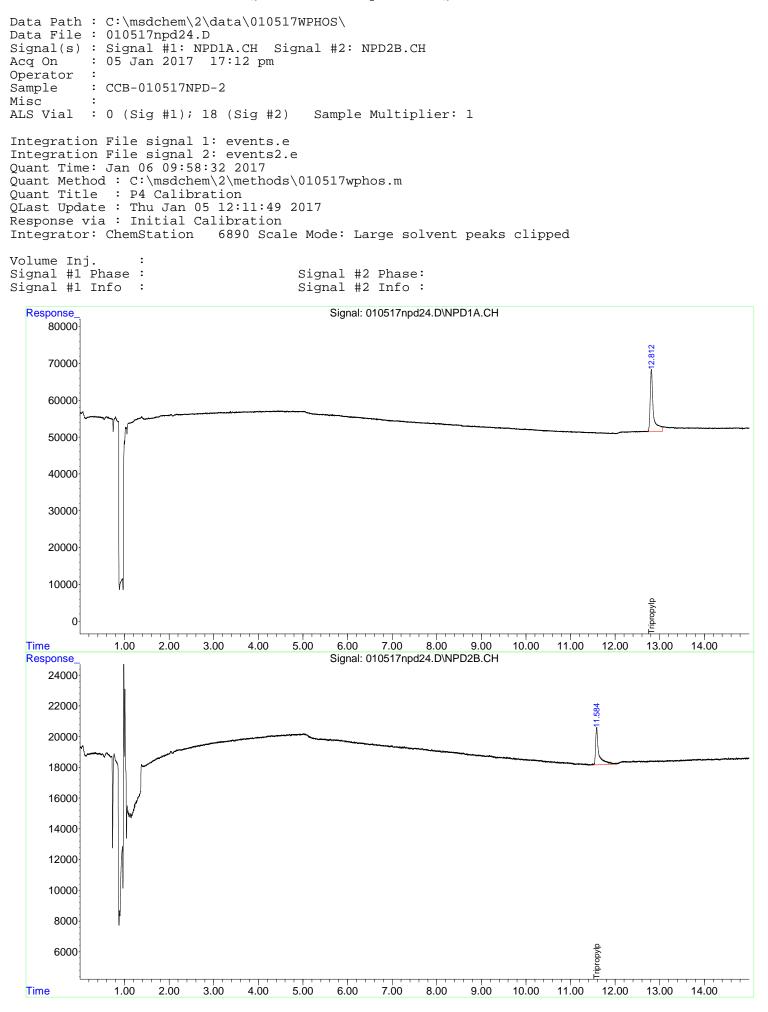

Quantitation Report (Qedit) Signal #1 : C:\msdchem\2\data\01...10517npd20.D\NPD1A.CH Vial: 0 Signal #2 : C:\msdchem\2\data\010517WPHOS\010517npd20.D\NPD2B.CH Acq On : 05 Jan 2017 15:55 pm Operator: : CCV-010517NPD-1 : GC-NPD Sample Inst Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Jan 05 16:11:00 2017 Results File: 010517wphos.RES Method : C:\msdchem\2\methods\010517wphos.m (ChemStation Integrator) : P4 Calibration Title : Thu Jan 05 12:11:49 2017 Last Update Response via : Multiple Level Calibration

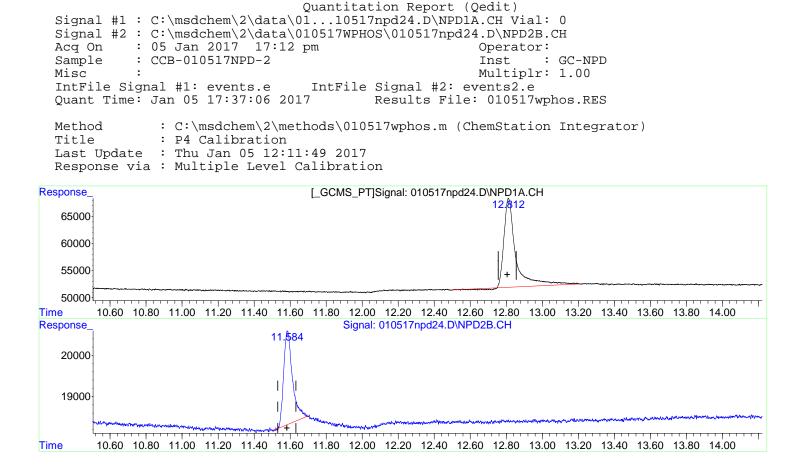



Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd21.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 16:15 pm Operator : Sample : 1612702-007A Misc : ALS Vial : 0 (Sig #1); 19 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:55:15 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81511.58657789586529463.173m501.310m2)White Pho...0.00000N.D.N.D. -----_____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

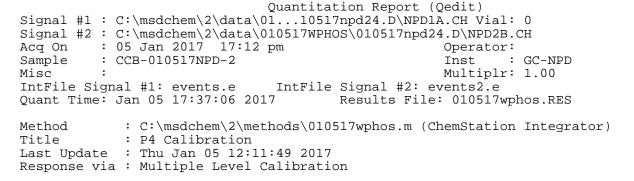
010517wphos.m Fri Jan 06 10:06:44 2017

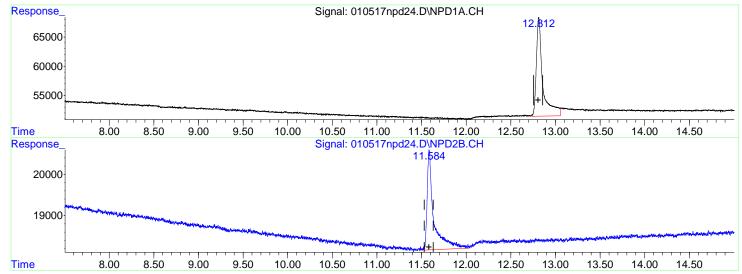


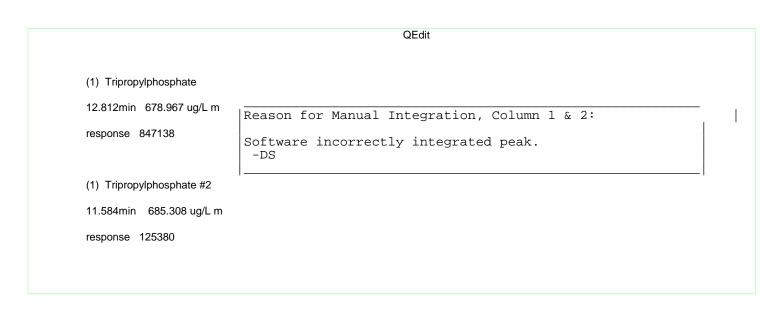

10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80

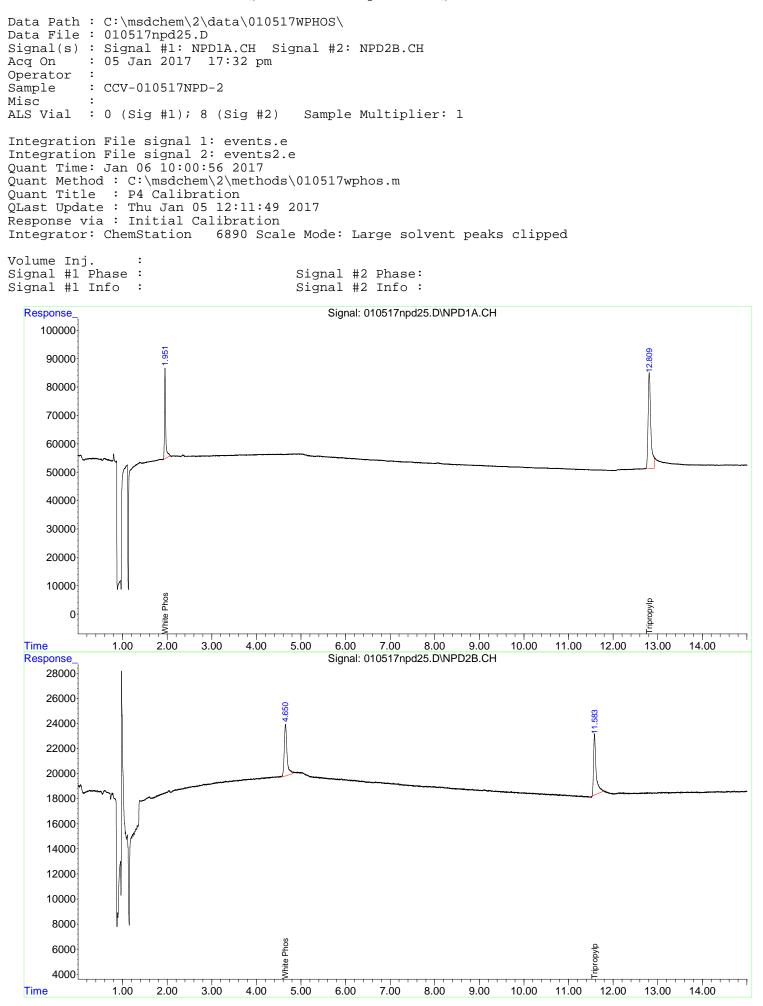


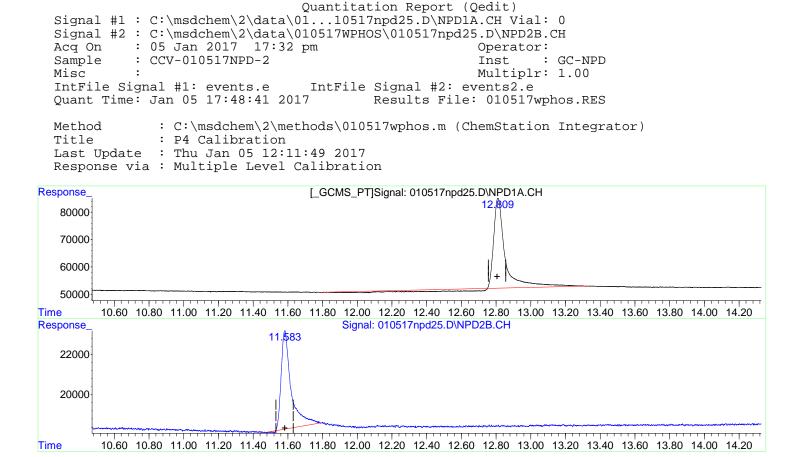
19000


Time


Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd24.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 17:12 pm Operator : Sample : CCB-010517NPD-2 Misc : ALS Vial : 0 (Sig #1); 18 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:58:32 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.81211.584847138125380678.967m685.308m2)White Pho...0.00000N.D.N.D. -----_____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

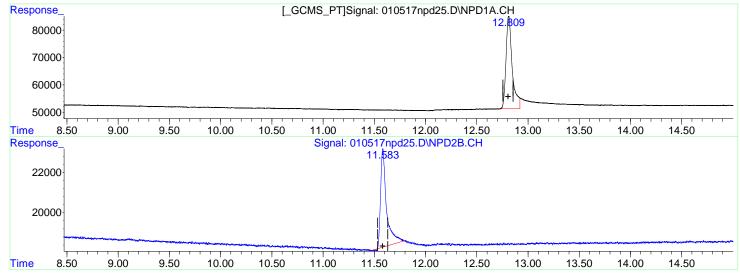


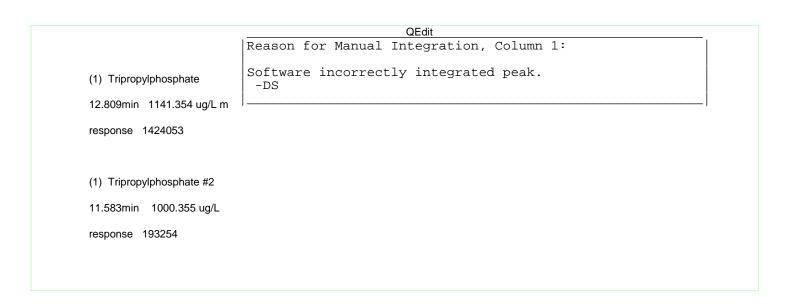

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd25.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH : 05 Jan 2017 17:32 pm Acq On Operator : Sample : CCV-010517NPD-2 Misc : ALS Vial : 0 (Sig #1); 8 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Ouant Time: Jan 06 10:00:56 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. : Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 15% Max. Rel. Area : 150% Compound Amount Calc. %Dev Area% Dev(Mi %Dev Area% Dev(Min)
 Tripropylphosphate
 2000.000
 1141.354
 42.9#
 54
 0.00

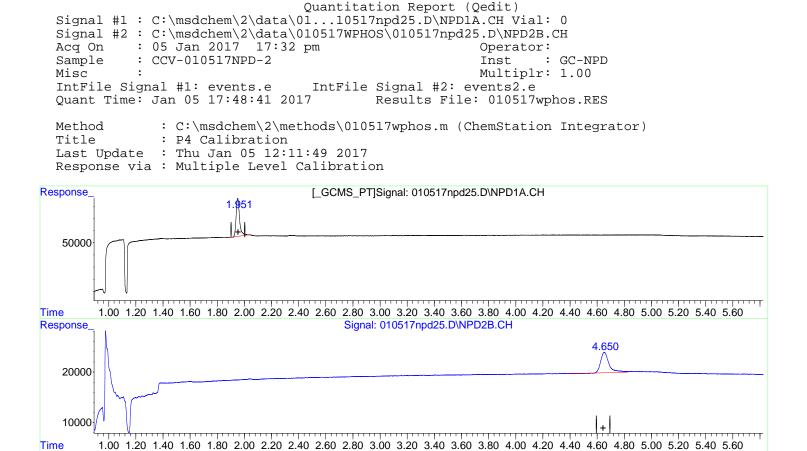

 White Phosphorus
 42.920
 38.318
 10.7
 90
 0.00
 1 42.920 38.318 10.7 90 0.00 2 White Phosphorus Signal #2 Tripropylphosphate White Phosphorus 2000.0001000.35550.0#430.042.92032.68023.9#770.00 50.0# 43 0.00 1 2 Evaluate Continuing Calibration Report - Not Founds Signal #2

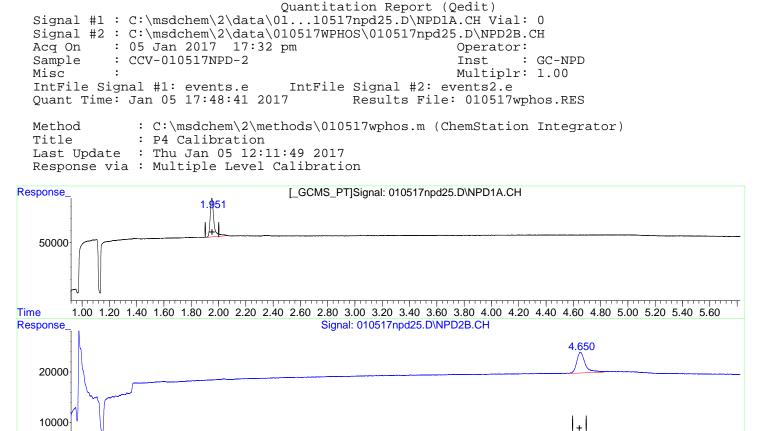
(#) = Out of Range

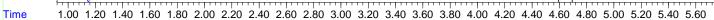

SPCC's out = 0 CCC's out = 0

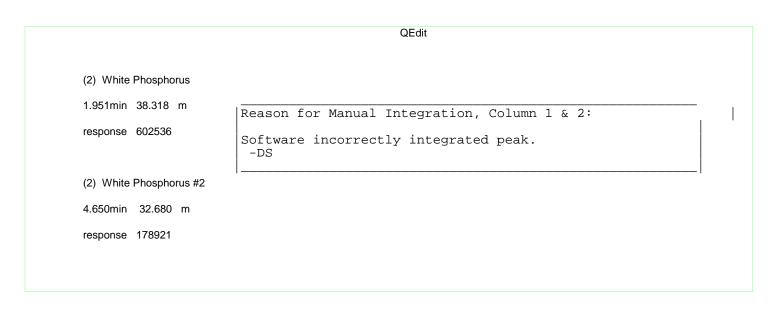

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd25.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 17:32 pm Operator : Sample : CCV-010517NPD-2 Misc : ALS Vial : 0 (Sig #1); 8 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 10:00:56 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80911.58314240531932541141.354m1000.3552)White Pho...1.9514.65060253617892138.318m32.680m _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.











Injection Log

Data Directory: C:\msdchem\2\data\010517WPHOS\

SampleName	MiscInfo	Vial	Multiplier	Inject	ion Tir	ne	
1) 010517npdA.D Prime102816NPD			1.000	05 Jan	2017	8:12	am
2) 010517npdB.D Prime102816NPD			1.000	05 Jan	2017	8:32	am
3) 010517npdC.D Prime102816NPD			1.000	05 Jan	2017	8:51	am
4) 010517npdE.D Prime102816NPD			1.000	05 Jan	2017	9:10	am
5) 010517npdG.D Prime102816NPD			1.000	05 Jan	2017	9:30	am
6) 010517npd01.D ICB-010517NPD			1.000	05 Jan	2017	9:49	am
7) 010517npd02.D ICAL1-010517NPD			1.000	05 Jan	2017	10:08	am
8) 010517npd03.D ICAL2- 010517NPD			1.000	05 Jan	2017	10:28	am
9) 010517npd04.D ICAL3- 010517NPD			1.000				am
10) 010517npd05.D ICAL4- 010517NPD			1.000				am
11) 010517npd06.D ICAL5- 010517NPD			1.000	05 Jan	2017	11:25	am
12) 010517npd07.D ICAL6- 010517NPD			1.000	05 Jan	2017	11:44	am
13) 010517npd08.D ICV- 010517NPD			1.000	05 Jan	2017	12:03	pm
14) 010517npd09.D CRQL-010517NPD			1.000	05 Jan	2017	12:23	pm
15) 010517npd10.D MB-42082			1.000	05 Jan	2017	12:42	pm
16) 010517npd11.D LCS-42082			1.000	05 Jan	2017	13:02	pm
17) 010517npd12.D							pm
18) 010517npd13.D 1612702-001A			1.000	05 Jan	2017	13:40	
19) 010517npd14.D 1612702-002A			1.000	05 Jan	2017	13:59	pm
20) 010517npd15.D 1612702-003A			1.000	05 Jan	2017	14:19	pm
21) 010517npd16.D			1 000	05 .Tan	2017	14.38	рт 2

22) 010517npd17.D 1612702-005A	1.000		an 2017	14:57	pm
23) 010517npd18.D 1612702-006A	1.000		an 2017	15:17	pm
24) 010517npd19.D CCB-010517NPD-1	1.000				pm
25) 010517npd20.D CCV-010517NPD-1	1.000				pm
26) 010517npd21.D 1612702-007A	1.000	05 J	an 2017	16:15	pm
27) 010517npd22.D LOD-42082	1.000	05 J	an 2017	16:34	pm
28) 010517npd23.D LOQ-42082	1.000	05 J	an 2017	16:53	pm
29) 010517npd24.D CCB-010517NPD-2	1.000				pm
30) 010517npd25.D CCV-010517NPD-2	1.000				pm

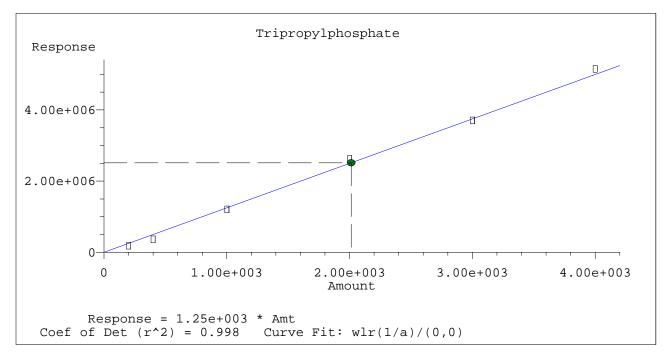
Method Path : C:\msdcher Method File : 010517wpho Title : P4 Calibrat: Last Update : Thu Jan (Response Via : Initial (os.m ion 05 12:1	L1:49 2	2017					
Calibration Files 1 =010517npd02.D 4 =010517npd05.D	2 5		517npd(517npd(3 6		517npd04.1 517npd07.1	
Compound	1	2	3	4	5	6	Avg	%RSD
 Tripropylphos White Phosphorus 								
Signal #2 Calibration Fi 1 =010517npd02.D 4 =010517npd05.D	2		517npd(517npd(517npd04.I 517npd07.I	
Compound	1	2	3	4	5	6 2	Avg	%RSD
 Tripropylphos White Phosphorus 								
(#) = Out of Range ###	Number	c of ca	alibrat	ion le	evels e	exceed	ed format	###

Method Path : C:\msdchem\2\methods\ Method File : 010517wphos.m Title : P4 Calibration Last Update : Thu Jan 05 12:11:49 2017 Response Via : Initial Calibration Total Cpnds : 5 PK# Compound Name Exp_RT Rel_RT Cal A/H ID _____

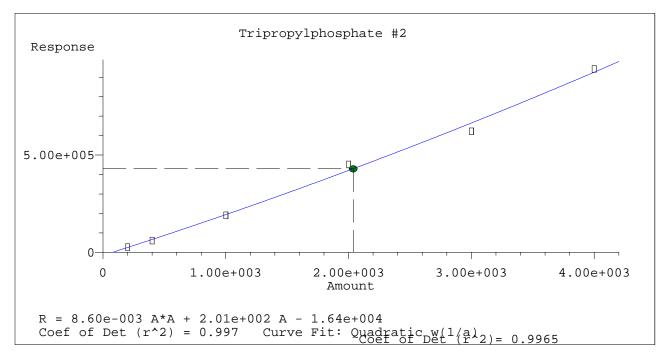
 12.806
 1.000
 LO A R

 1.953
 1.000
 L A R

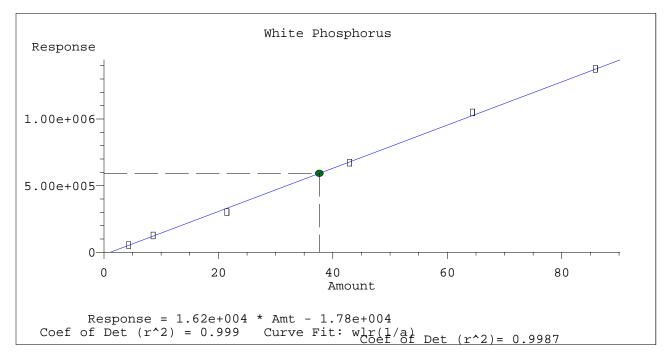
 0.000
 1.000
 A A B

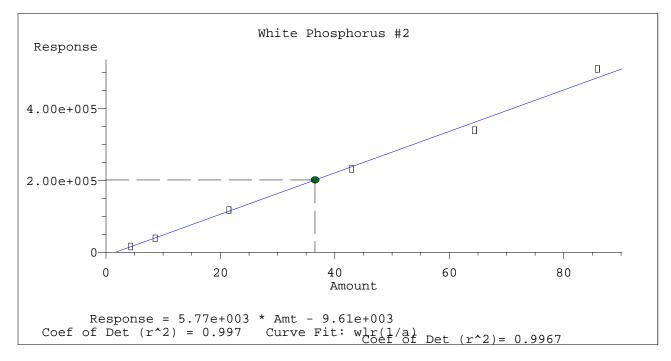

 11.582
 1.000
 Q A R

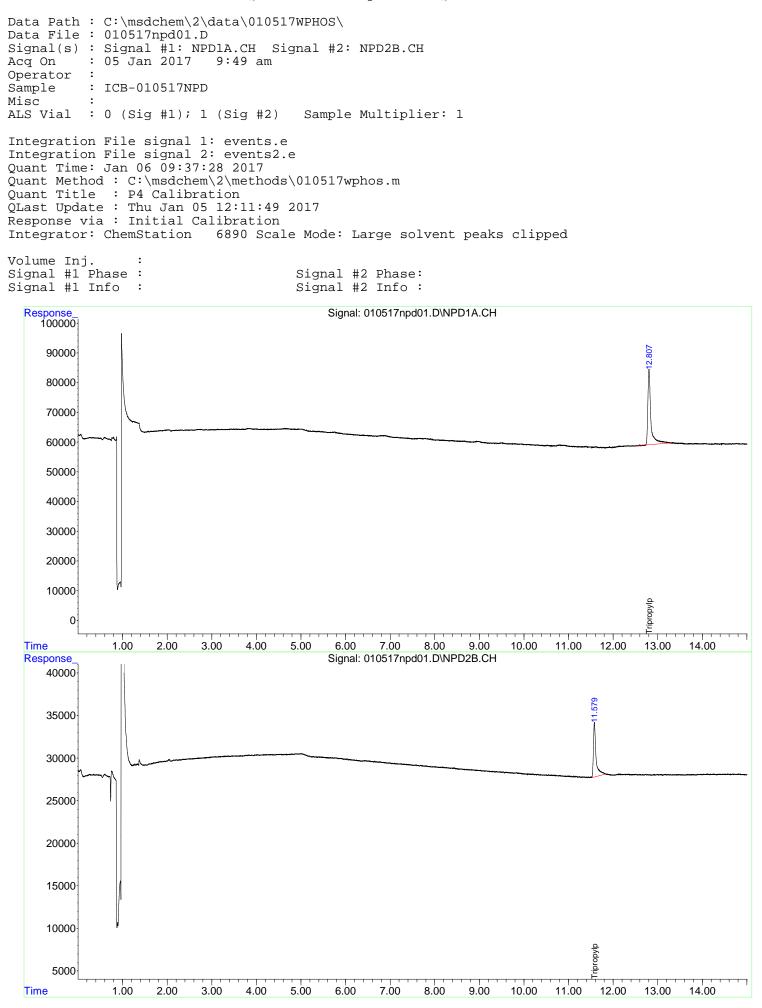
 4.645
 1.000
 L A R

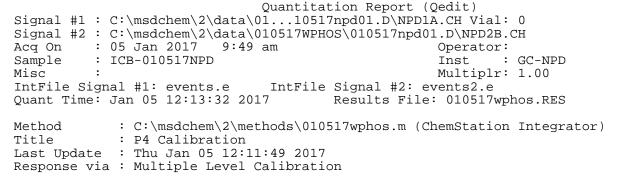

 Tripropylphosphate
 White Phosphorus 3 Signal #2
4 Tripropylphosphate #2
5 White Phosphorus #2 Cal A = Average L = Linear LO = Linear w/origin Q = Quad QO = Quad w/origin A/H = Area or Height ID R = R.T. B = R.T. & Q Q = Qvalue L = Largest A = All _____ _____

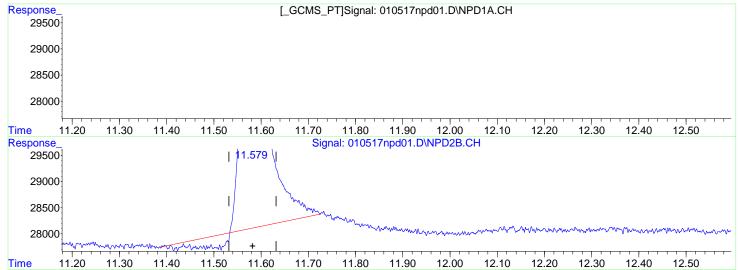
010517wphos.m Fri Jan 06 10:11:43 2017

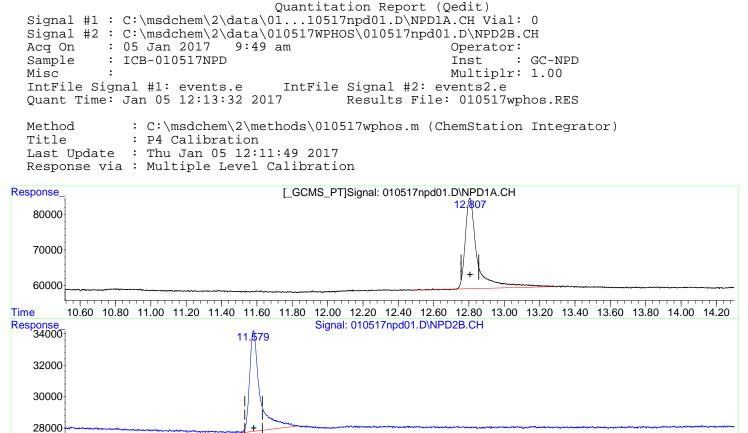

Quadratic and Linear Equations Report C:\msdchem\2\methods\010517wphos.m C:\msdchem\2\data\010517WPHOS\010517npd08.D Compound: Tripropylphosphate

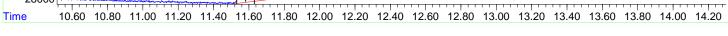

Quadratic and Linear Equations Report C:\msdchem\2\methods\010517wphos.m C:\msdchem\2\data\010517WPHOS\010517npd08.D Compound: Tripropylphosphate #2

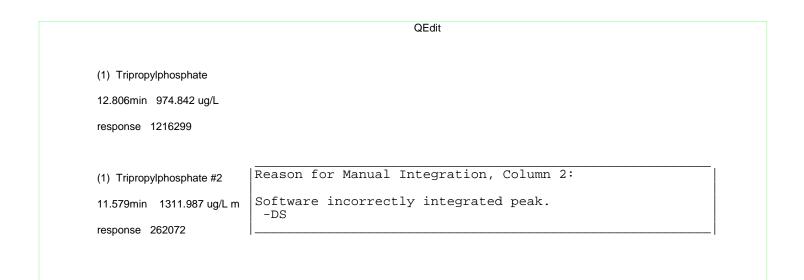

Quadratic and Linear Equations Report C:\msdchem\2\methods\010517wphos.m C:\msdchem\2\data\010517WPHOS\010517npd08.D Compound: White Phosphorus

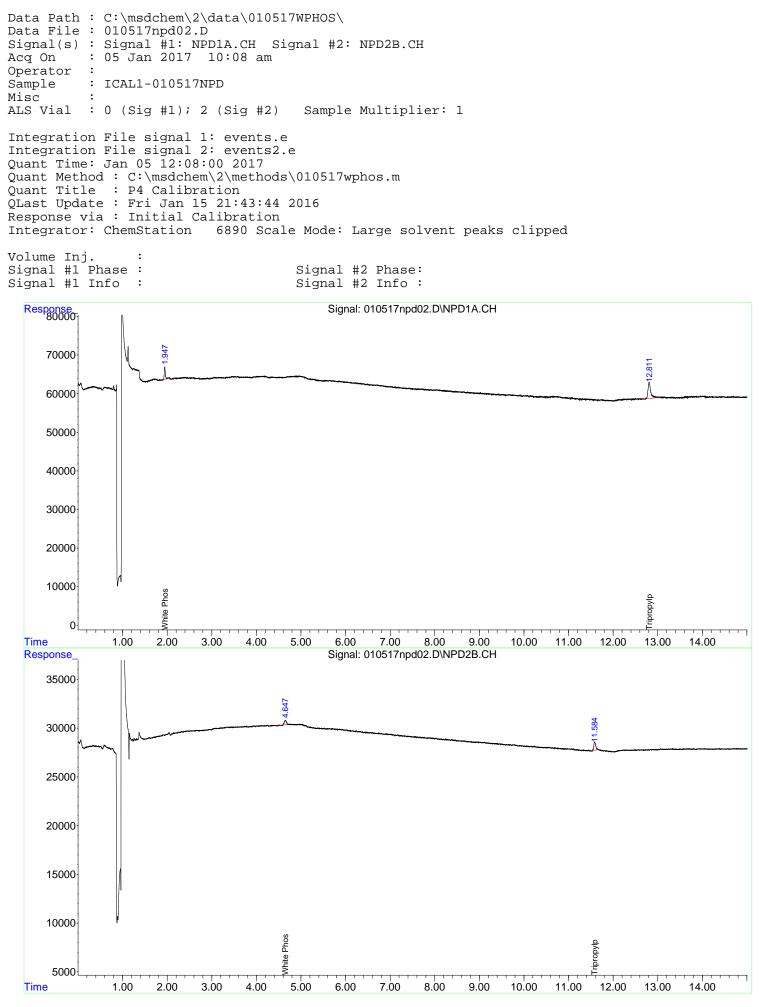


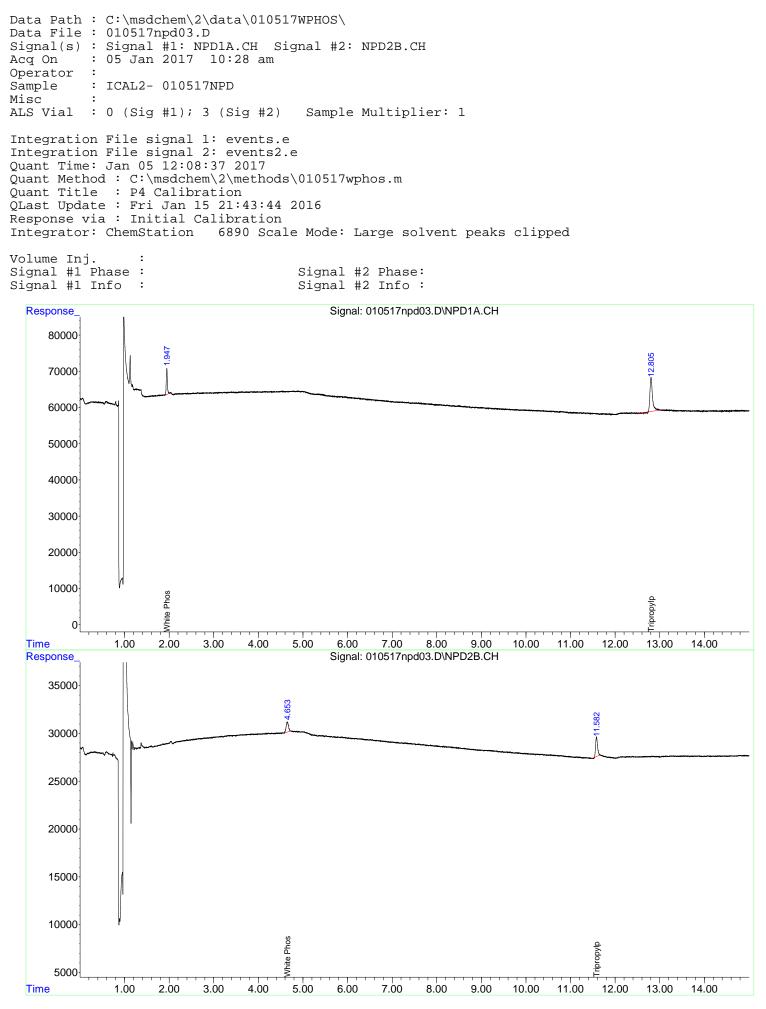

Quadratic and Linear Equations Report C:\msdchem\2\methods\010517wphos.m C:\msdchem\2\data\010517WPHOS\010517npd08.D Compound: White Phosphorus #2


Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd01.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 9:49 am Operator : Sample : ICB-010517NPD Misc : ALS Vial : 0 (Sig #1); 1 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:37:28 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80611.5791216299262072974.8421311.987m2)White Pho...0.00000N.D.N.D. -----_____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

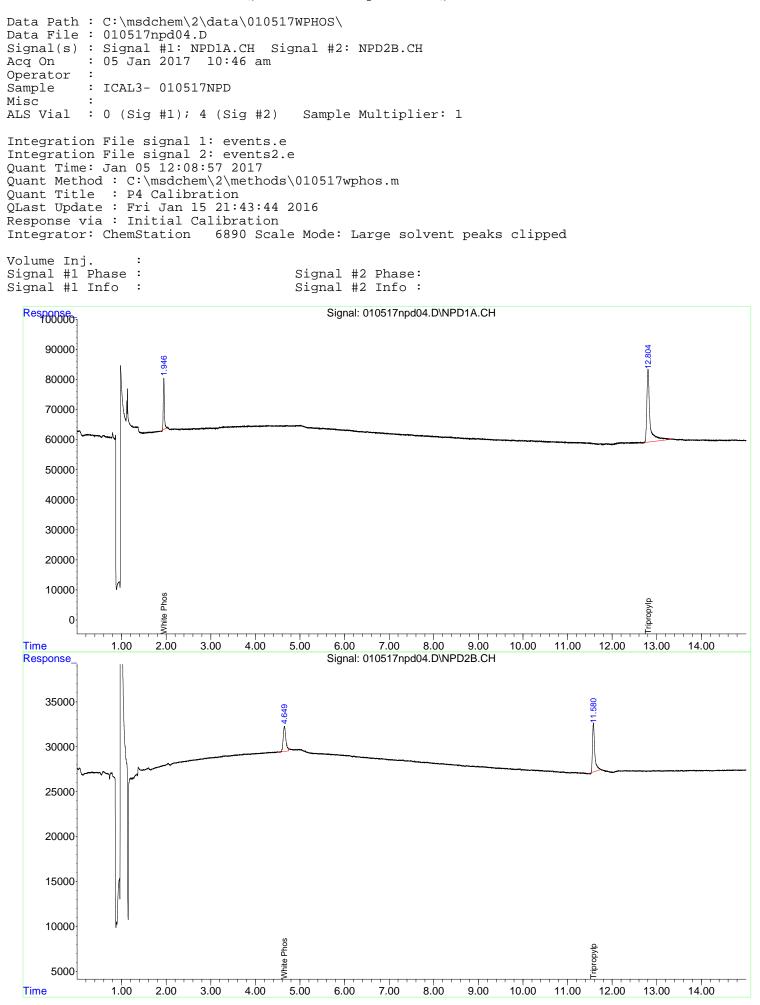




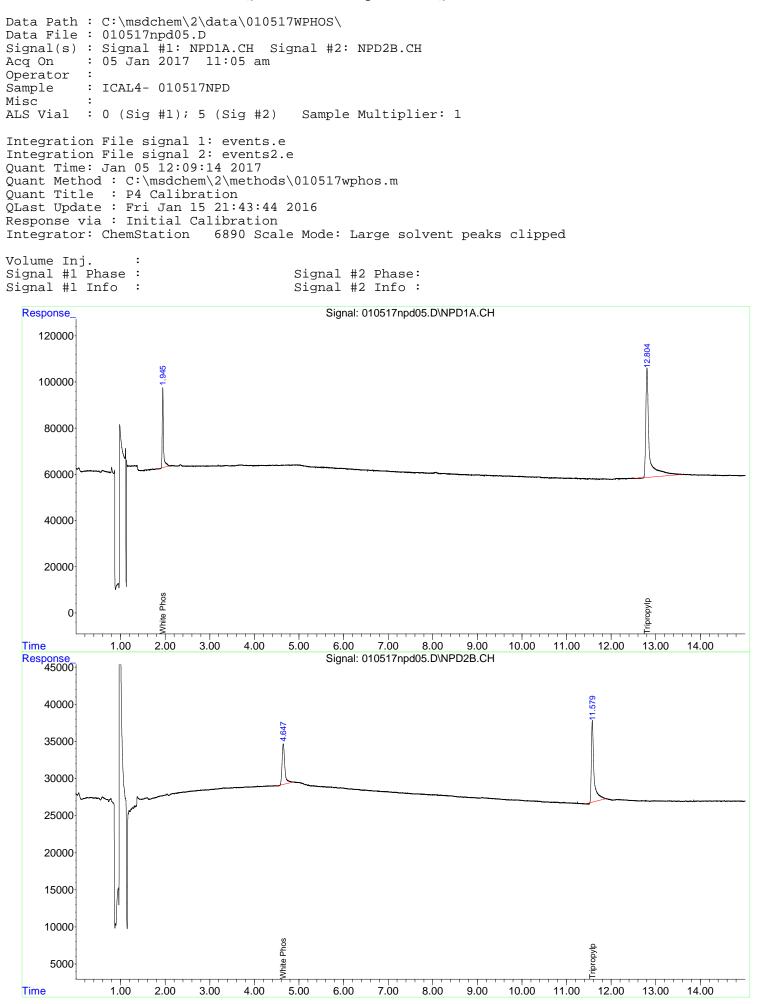




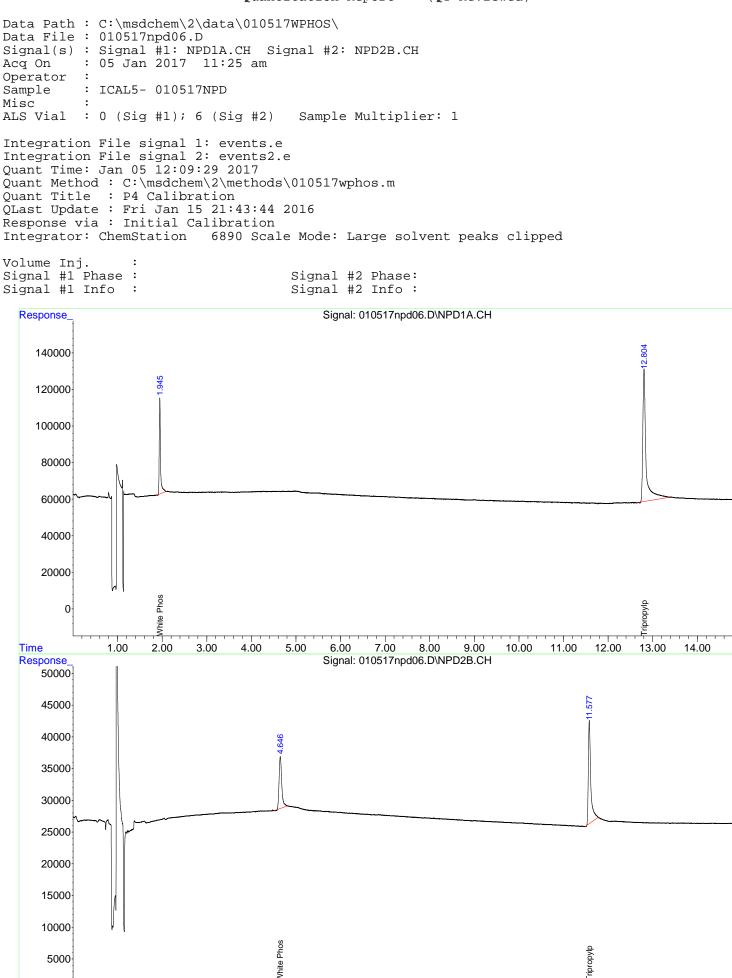
Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd02.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 10:08 am Operator : Sample : ICAL1-010517NPD Misc : ALS Vial : 0 (Sig #1); 2 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 12:08:00 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Fri Jan 15 21:43:44 2016 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80811.582184577262871.7586.230 #2)White Pho...1.9464.64854002158862.1191.924 _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.


Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd03.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 10:28 am Operator : Sample : ICAL2- 010517NPD Misc : ALS Vial : 0 (Sig #1); 3 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 12:08:37 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Fri Jan 15 21:43:44 2016 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80611.582362799600843.45614.057 #2)White Pho...1.9474.650125418387022.1622.134 _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

010517wphos.m Fri Jan 06 10:06:08 2017



Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd04.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 10:46 am Operator : Sample : ICAL3- 010517NPD Misc : ALS Vial : 0 (Sig #1); 4 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 12:08:57 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Fri Jan 15 21:43:44 2016 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80511.580120352018975611.46543.938 #2)White Pho...1.9474.6513010151176302.2672.859 (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.


010517wphos.m Fri Jan 06 10:06:10 2017

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd05.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 11:05 am Operator : Sample : ICAL4- 010517NPD Misc : ALS Vial : 0 (Sig #1); 5 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 12:09:14 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Fri Jan 15 21:43:44 2016 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80411.579262366345164724.993103.593 #2)White Pho...1.9464.6486719262318932.4883.910 # (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd06.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 11:25 am Operator : Sample : ICAL5- 010517NPD Misc : ALS Vial : 0 (Sig #1); 6 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 12:09:29 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Fri Jan 15 21:43:44 2016 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80511.578370145762169935.260141.849 #2)White Pho...1.9464.64710484433400652.7144.904 # _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

2.00

3.00

4.00

5.00

6.00

7.00

8.00

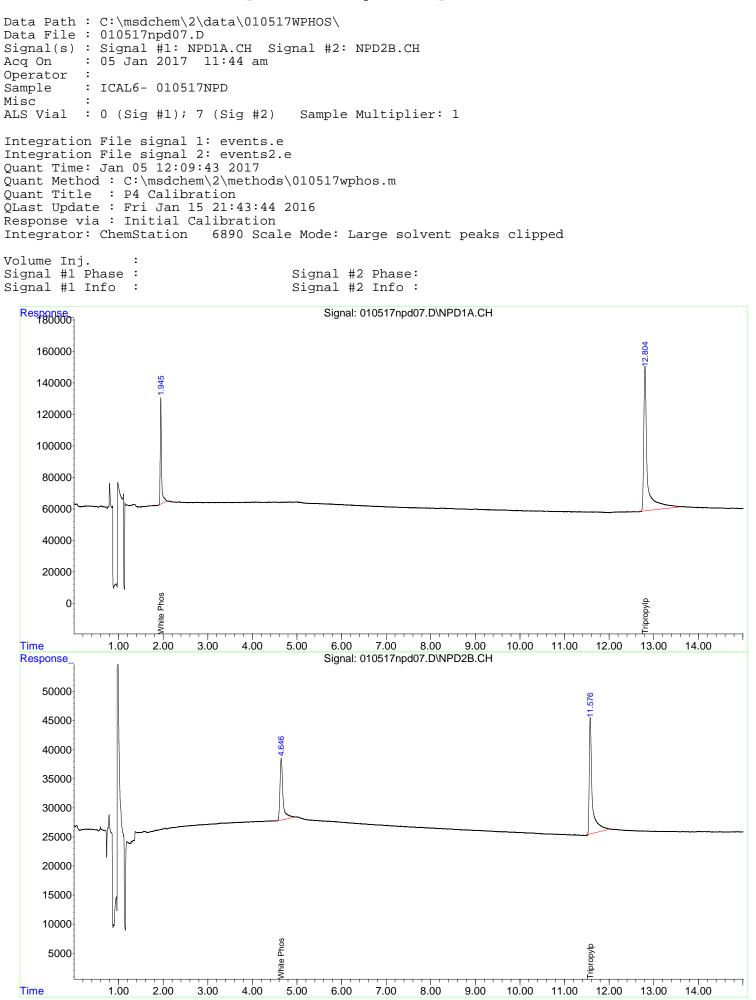
9.00

10.00

1.00

Time

Page 130 of 152

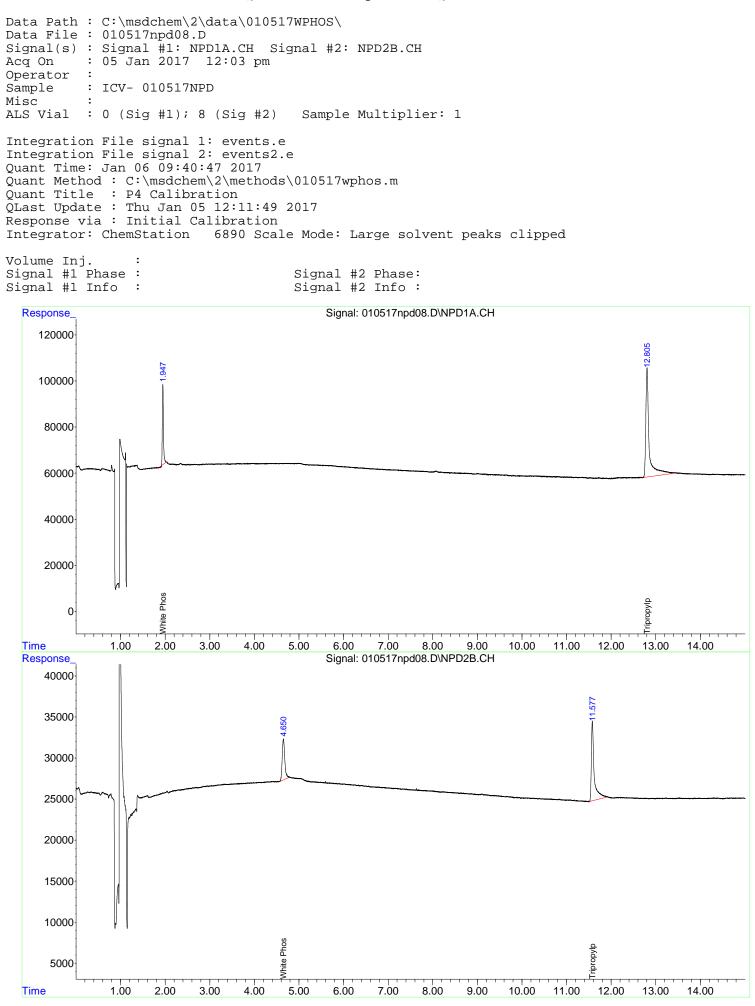

12.00

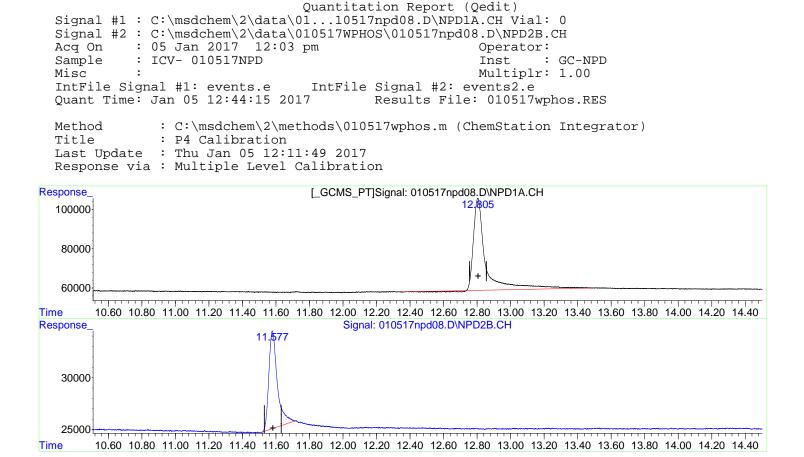
13.00

14.00

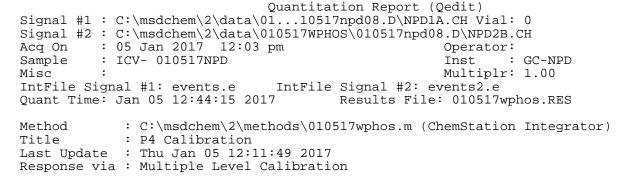
11.00

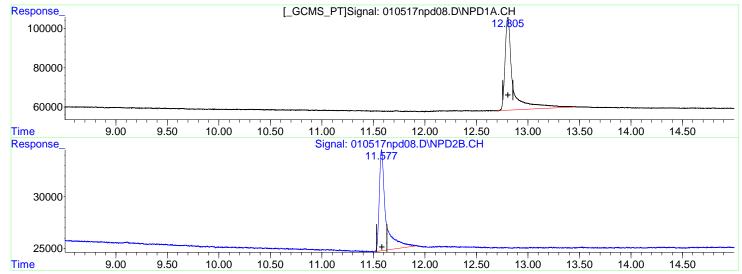
Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd07.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 11:44 am Operator : Sample : ICAL6- 010517NPD Misc : ALS Vial : 0 (Sig #1); 7 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 05 12:09:43 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Fri Jan 15 21:43:44 2016 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ Target Compounds 1)Tripropyl...12.80511.578514947394204549.053212.932 #2)White Pho...1.9464.64713750825104592.9096.470 # _____ (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

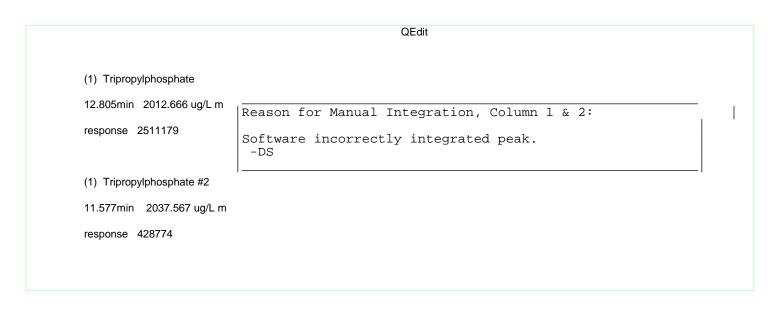

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd08.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH : 05 Jan 2017 12:03 pm Acq On Operator : Sample : ICV- 010517NPD Misc : ALS Vial : 0 (Sig #1); 8 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Ouant Time: Jan 06 09:40:47 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. : Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 15% Max. Rel. Area : 150% Compound Amount Calc. %Dev Area% Dev(Mi %Dev Area% Dev(Min)
 Tripropylphosphate
 2000.000
 2012.666
 -0.6
 96
 0.00

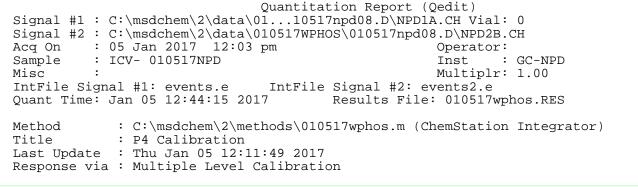

 White Phosphorus
 42,920
 37,631
 12,3
 88
 0.00
 1 12.3 88 0.00 2 White Phosphorus 42.920 37.631 Signal #2 2000.0002037.567-1.9950.0042.92036.53514.9870.00 Tripropylphosphate White Phosphorus 1 2 Evaluate Continuing Calibration Report - Not Founds Signal #2

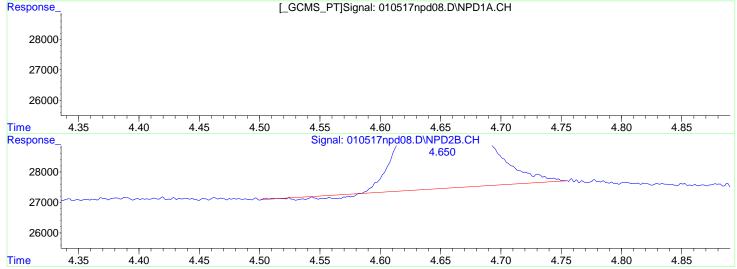
(#) = Out of Range

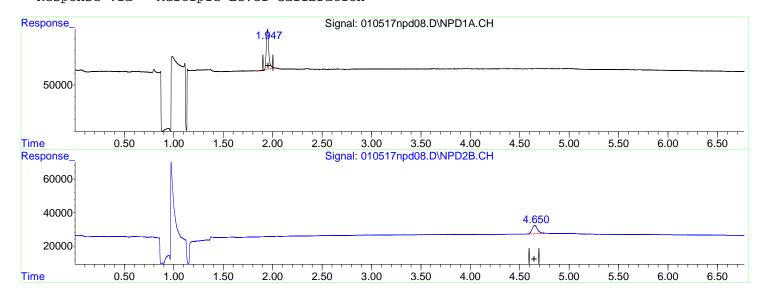

SPCC's out = 0 CCC's out = 0

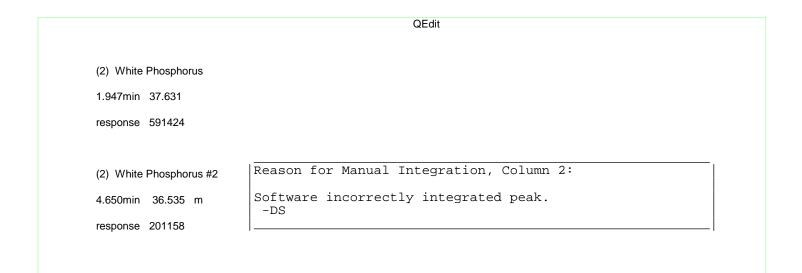

Data Path : C:\msdchem\2\data\010517WPHOS\ Data File : 010517npd08.D Signal(s) : Signal #1: NPD1A.CH Signal #2: NPD2B.CH Acq On : 05 Jan 2017 12:03 pm Operator : Sample : ICV- 010517NPD Misc : ALS Vial : 0 (Sig #1); 8 (Sig #2) Sample Multiplier: 1 Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Jan 06 09:40:47 2017 Quant Method : C:\msdchem\2\methods\010517wphos.m Quant Title : P4 Calibration QLast Update : Thu Jan 05 12:11:49 2017 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound RT#1 RT#2 Resp#1 Resp#2 ug/L ug/L _____ _____ Target Compounds 1)Tripropyl...12.80511.57725111794287742012.666m2037.567m2)White Pho...1.9474.65059142420115837.63136.535m _ _ _ _ _ _ _ _ _ . (f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.











Quantitation Report (Qedit) Signal #1 : C:\msdchem\2\data\01...10517npd08.D\NPD1A.CH Vial: 0 Signal #2 : C:\msdchem\2\data\010517WPHOS\010517npd08.D\NPD2B.CH Acq On : 05 Jan 2017 12:03 pm Operator: : ICV- 010517NPD : GC-NPD Sample Inst Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Jan 05 12:44:15 2017 Results File: 010517wphos.RES Method : C:\msdchem\2\methods\010517wphos.m (ChemStation Integrator) : P4 Calibration Title : Thu Jan 05 12:11:49 2017 Last Update Response via : Multiple Level Calibration

Page 139 of 152

INORGANIC ANAI	LYSIS DATA SHEET	MAD-DU01CS
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.:	<u>1612702</u>
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-001A</u>
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 11:05 AM</u>
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	34			1.0	1.0	1.0	В

INORGANIC ANA	LYSIS DATA SHEET	MAD-DU02CS
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.:	<u>1612702</u>
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-002A</u>
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 1:30 PM</u>
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	30			1.0	1.0	1.0	В

INORGANIC ANAL	INORGANIC ANALYSIS DATA SHEET				
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:				
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.:	<u>1612702</u>			
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-003A</u>			
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>			
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>			
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 3:20 PM</u>			
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>			

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	22			1.0	1.0	1.0	В

CLIENT SAMP ID

-

INORGANIC ANA	ALYSIS DATA SHEET	MAD-DU04CS
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.:	<u>1612702</u>
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-004A</u>
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 9:00 AM</u>
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	30			1.0	1.0	1.0	В

CLIENT SAMP ID

٦

INORGANIC ANA	LYSIS DATA SHEET	MAD-DU05CS
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.:	<u>1612702</u>
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-005A</u>
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 2:15 pm</u>
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М	
7732-18-5	Percent Moisture	31			1.0	1.0	1.0	В	

CLIENT SAMP ID

٦

INOR	RGANIC ANALYSIS DATA SHEET	MAD-DU06CS
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>E</u>	UR02 Workorder No.:	<u>1612702</u>
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-006A</u>
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 10:30 AM</u>
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М	
7732-18-5	Percent Moisture	32			1.0	1.0	1.0	В	

INORGANIC ANA	LYSIS DATA SHEET	MAD-DU07CS
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.:	<u>1612702</u>
Matrix: <u>Restricted Soil</u>	Lab Sample ID:	<u>1612702-007A</u>
% Solids: <u>0</u>	Date Received:	<u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	<u>12/11/2016 12:30 PM</u>
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	31			1.0	1.0	1.0	В

INORG	ANIC ANALYSIS DATA SHEET	ZZZZZZ
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:	
Lab Code: <u>GLEN01</u> ClientID: <u>EUR</u>	R02 Workorder No.:	<u>1612702</u>
Matrix:	Lab Sample ID:	<u>1612665-001ADUP</u>
% Solids: <u>0</u>	Date Received:	12/22/2016 2:02 PM
Concentration Units: <u>wt%</u>	Date Analyzed:	<u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:	
Instrument ID: <u>BAL12</u>	Batch ID:	<u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	19			1.0	1.0	1.0	В

INORGANIC A	ANALYSIS DATA SHEET MAD-DU07LR1
Lab Name: <u>RTI Laboratories, Inc.</u>	Contract:
Lab Code: <u>GLEN01</u> ClientID: <u>EUR02</u>	Workorder No.: <u>1612702</u>
Matrix:	Lab Sample ID: <u>1612702-007ADUP</u>
% Solids: <u>0</u>	Date Received: <u>12/22/2016 2:02 PM</u>
Concentration Units: <u>wt%</u>	Date Analyzed: <u>12/27/2016 11:30 AM</u>
Total/Dissolved: <u>(Total)</u>	Date Collected:
Instrument ID: <u>BAL12</u>	Batch ID: <u>R91282</u>

CAS No.	Analyte	Concentration	С	Q	DL	LOD	LOQ	М
7732-18-5	Percent Moisture	32			1.0	1.0	1.0	В

CLIENT SAMP ID

MAD-DU07

Lab Name: <u>RTI</u>	Laboratories, Inc.	Contract:	
Lab Code: <u>GLE</u>	<u>N01</u>	Workorder No:	<u>1612702</u>
Matrix: <u>Restr</u>	ricted Soil	Level (low/med):	LOW
% Solids for S	Sample: <u>O</u>	Concentration Units:	<u>wt%</u>

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Percent Moisture	20	31		32		2.33		В

CLIENT SAMP ID

DUPLICATES

ZZZZZZ

<u>1612702</u>

Lab Name:	<u>RTI Laborator</u>	ries, Inc.	Contract:	
Lab Code:	<u>GLEN01</u>		Workorder No:	<u>161</u>
Matrix:	Soil		Level (low/med):	LOW
% Solids :	for Sample:	<u>0</u>	Concentration Units:	<u>wt%</u>

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Percent Moisture	20	17		19		7.17		в

RTI Laboratories, Inc Balance - Daily Verification Log Balance # 12 AB204 * When required for FOG (HEM1664) Int Cal - Internal balance calibration r

Livonia, Michigan Weight Set - K618

+/- 0.0005

Int. Cal. - Internal balance calibration noted by X when performed.

Date	Time	0.002g Wt.	a by X when perfor 1.00g Wt.	10.0g Wt.	100.00g Wt.	Initials Int. Cal.
12/16/2016	8:30	0.0019	0.9997	10.0001	94.9994	AP
Wt. (2)*			สมารณะแหน่งสมัญญี่มีการการกรุงการเป็นระการสมัญญาณาผู้แหน อาจจะหนังสามารณะอาจ	neeren karden ander ander in der seinen einen	for an and the second	
12/17/2016		-				
Wt. (2)*						
12/18/2016						
Wt. (2)*						
12/19/2016	9:00	0.0021	0.9998	10.0001	99.9992	Ar
Wt. (2)*						
12/20/2016	q:30	0.0021	0.9996	10.0001	cp9.9994	AP
Wt. (2)*						
12/21/2016	12:00	0-0022 ASP	0-9998	9.9998	an.99995	AP
Wt. (2)*					u · v	
12/22/2016	9:00	0.0019	0.9999	9.9999	99.9999	AP
Wt. (2)*						
12/23/2016						
Wt. (2)*						
12/24/2016						
Wt. (2)*						
12/25/2016						
Wt. (2)*						
12/26/2016			: 			
Wt. (2)*						
12/27/2016	8:15	2.0020	0.99990	9.9992	100.0000	21
Wt. (2)*						
12/28/2016	8:30	0.00/9	0.9999	9.9998	100.0004	AP
Wt. (2)*						
12/29/2016	8:40	0.0019	0.9998	9.9998	100.0003	AP
Wt. (2)*						
12/30/2016	8:00	0.0019	0.9997	10.0000	100.0003	AP
Wt. (2)*						
12/31/2016						
Wt. (2)*						

Balance Logbook -Updated 081214.xls

Page 151 of 152

Oven	Date/Time In	Temp C	Date/Time Out	Temp C
5	12/22/2016 9:00	105	12/22/2016 10:00	105
5	12/27/2016 12:00	105	12/28/2016 8:00	105
5	12/28/2016 9:00	105	12/28/2016 10:00	105

Analyst	Analysis Date/Time
ASP	12/27/2016 11:30

Filter	Sample	Pan Tare	Sample + Tare	First Dry	Second Dry		Third Dry		Percent
#	ID	Weight (g)	Weight (g)	Weight (g)	Weight (g)	cw	Weight (g)	cw	Moisture
1	1612555-005A	1.2900	23.4800	23.2900	23.3000				0.8112
2	1612665-001A	1.2900	23.0800	19.3100	19.3100				17.3015
3	1612665-001ADUP	1.2900	22.9700	18.9600	18.9400				18.5886
4	1612665-002A	1.2900	23.3500	19.8400	19.8400				15.9112
5	1612699-005A	1.3000	20.7500	20.6700	20.6700				0.4113
6	1612701-001D	1.3000	21.8000	15.5000	15.4800				30.8293
7	1612701-002D	1.3000	20.1400	14.5300	14.5100				29.8832
8	1612701-003D	1.3100	22.8800	19.0200	19.0100				17.9416
9	1612702-001A	1.3000	22.7200	15.4600	15.4400				33.9869
10	1612702-002A	1.3000	21.7300	15.5700	15.5400				30.2986
11	1612702-003A	1.3100	22.9700	18.3400	18.3100				21.5143
12	1612702-004A	1.3000	22.4500	16.1600	16.1200				29.9291
13	1612702-005A	1.2900	21.8300	15.5700	15.5600				30.5258
14	1612702-006A	1.3000	23.0100	16.0600	16.0500				32.0590
15	1612702-007A	1.2900	22.8600	16.1600	16.1300				31.2007
16	1612702-007ADUP	1.2900	23.4600	16.4000	16.3800				31.9350

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Report Date: January 16, 2017

Project: Tinian Phase I/II ESA

Submittal Date: 12/20/2016 Group Number: 1746738 PO Number: 15167

Client Sample Description MAD-DU01 Composite Soil MAD-DU02 Composite Soil MAD-DU03 Composite Soil MAD-DU04 Composite Soil MAD-DU05 Composite Soil MAD-DU06 Composite Soil MAD-DU07 Composite Soil

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To EA Engineering, Science & Tech

Attn: Brenda Nuding

Respectfully Submitted,

Matalie K - 2

Natalie R. Luciano Senior Specialist

(717) 556-7258

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU01 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 11:05 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755030
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU02 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 13:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755031
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU03 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 15:20 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755032
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU04 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 09:00 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755033
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU05 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 14:15 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755034
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU06 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 10:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755035
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU07 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 12:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/16/2017 10:16

LL Sample	#	SW 8755036
LL Group	#	1746738
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Sample Comments

Environmental Analysis Request/Chain of Custody

🗱 eurofins	•						-				- .							<i>w</i>
Lancaster Laboratories Environmental			Acct. #	009	Gro	oup # _	74	673	38	{	Sample	# <u> 8</u>	175	503	<u>50-1</u>	36		
Client: EA Engineering, Science, E	Techn	volazy	,		Matrix	(ويندد فتقاذ التك	A	nalys	ses l	Reque	sted			For Lab U	Jse Only
Project Name/#: Tinian Mousald AD	Site ID #:					1						a where the second s	ion Co				SF #:	•
Project Manager: Bob Schambach	P.O. #:				ace Ind												SCR #:	
Sampler: M. Kelley, J. Duay	PWSID #:			Sediment	Ground Surface		l o	ŝ	-0	4 A	9	2					The second s	vation Codes
Phone #: (671) 646-5231	Quote #:			Sec			iner	40,4	6101	7	6330B	5					H = HCI	T = Thiosulfate
State where sample(s) were collected: Tiniar	7	Adda	*		ble ES		onta	SW82760512	Succlobl	2020	ιώ β	sh					N = HNO3	B = NaOH
	Colle	ction	Grab Comnosite		1.1		Total # of Containers		METALS SI	NETALS GOZE/747M	D	1 pmsprair					S = H₂SO₄ O = Other	P = H₃PO₄
Sample Identification	Date	Time	Grab	Soil	Water	Other:	Tot	PAH	ME	МЩ	EXC	31					Re	marks
NAD - DUOI	12/11/16	1105	γ	$C \times$			3	X	X	X		X						
MAD-DUØZ	12/11/14	(330		ΥX			3	\mathbf{X}	X	X	\succ	Х						
MAD-DUØ3	12/11/14	1520		Х×			3	X	\times	\times	X	X						
MAD-DUQ4	12/12/16	0900	7	۲ ×			3	X	\times	\succ	$\boldsymbol{\times}$	$\boldsymbol{\lambda}$						
NAD- DU05	12/12/16	1415		\times \times			3	7-	4	X	$\left \right\rangle$	Х						
MAD- NUØG	12/12/16	1030	7	κx			3	7	\times	\prec	\prec	\checkmark					,	
MAD-DUQ7	12/12/16	1230	Ż	××	*		3	-7-	\prec	4		×						
							<u> </u>											
			 			_												
					بر میں اور	ļ												
Turnaround Time Requested (TAT) (please chec	•	dard	Rush L		inquished	e An	ne D	"m	Da		Tim		Receiv	ed by	:		Date	Time
(Rush TAT is subject to laboratory approve	al and surcha	arges.)			Juli		1.	2	12/1									
Date results are needed:					inquished	by:			Ďа	ite	Tim	10	Receiv	ed by	:		Date	Time
	ail 🗌	Phor	ne 🔲	Rol	inquished	1 hu				10.			Dessi			·		
E-mail Address:				Kei	Inquisrieu	by:			Da	ie /	Tirr	1e	Receiv	'ea by	:		Date	Time
Phone:			<u> </u>		inquished	- hy		\rightarrow	\angle	10	Tip		Desalu	ad by			Dete	There
Data Package Options (please check if required))			1760	Inquisrieu	by.		$\left \right $	Da	ile	Tin	he	Receiv	eu by			Date	Time
Type I (Validation/non-CLP) MA MCP				-	Inquiphed		\checkmark	ł					Decel					
Type III (Reduced non-CLP) CT RCP				Rei	inquished	by:			Da	te	Tim	1e	Receiv		:		Date	Time
Type IV (CLP SOW) TX TRRP	-13										<u> </u>				2		12.20.16	0111
Type VI (Raw Data Only)			19		inquished	by Co	omme	ircial C	Carrie	r:								
EDD Required? Yes 🗌 No 🔲 If ye	s, format:			UPS	<u>}</u>	FedE	x`	<u>≻_</u> 0	Other_		a de la composición d		Tempe	erature) upon	receip	t 2.6 - 5.1	°C

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 Page 9 of 27

🔅 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID: 171275 Group Number(s): 1746738

Client: EA Eng.

Delivery Method:	<u>Fed Ex</u>		Arrival Timestamp:	<u>12/20/2016</u>	11:30	
Number of Packages:	<u>3</u>		Number of Projects:	<u>1</u>		
·····	Arr	ival Con	dition Summary			
Shipping Container Sealed:		Yes	Sample IDs on COC m	natch Containers	Yes	
Custody Seal Present:		Yes	Sample Date/Times m	atch COC:	Yes	
Custody Seal Intact:		Yes	VOA Vial Headspace	≥ ốmm:	N/A	
Samples Chilled:	•	Yes	Total Trip Blank Qty:	N	0	
Paperwork Enclosed:		Yes	Air Quality Samples Pr	esent:	No	
Samples Intact:		Yes				
Missing Samples:		No				
Extra Samples:		No				
Discrepancy in Container Qty	on COC:	No				

Samples Chilled Details											
The	ermometer Type	All Temperatures in °C.	•								
	3						· · ·				
Cooler #	Thermometer ID	Corrected Temp	<u>Therm. Type</u>	Ice Type	Ice Present?	Ice Container	Elevated Temp?				
. 1	DT131	4.6	DT	Wet	Y	Bagged	N				
2	DT131	2.6	DT	Wet	Y	Bagged	Ν				
3	DT131	5.4	DT	Wet	· Y	Bagged	Ν				
		· ·									

RTI Laboratories 31628 Glendale St. Livonia, MI 48150 TEL: (734) 422-8000 Website: www.rtilab.com

Friday, January 06, 2017

Kathy Binkley Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601 TEL: (717) 656-2300 FAX: (717) 656-6766

RE: Guam Samples Work Order #: 1612702 Dear Kathy Binkley:

There were no problems with the analytical events associated with this report unless noted in the Case Narrative.

This report may only be reproduced in its entirety. Individual pages, reproduced without supporting documentation, do not contain related information and may be misinterpreted by other data reviewers.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

achel dear

Rachel Dear Project Manager

RTI Laboratories, Inc. - Workorder Sample Summary

Date Reported: 1/6/2017 Original

Client:

Eurofins Lancaster Laboratories, Inc.

Project: Guam Samples

Lab Sample ID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1612702-001A	MAD-DU01		12/11/2016 11:05 AM	12/22/2016 2:02 PM	Restricted Soil
1612702-002A	MAD-DU02		12/11/2016 1:30 PM	12/22/2016 2:02 PM	Restricted Soil
1612702-003A	MAD-DU03		12/11/2016 3:20 PM	12/22/2016 2:02 PM	Restricted Soil
1612702-004A	MAD-DU04		12/11/2016 9:00 AM	12/22/2016 2:02 PM	Restricted Soil
1612702-005A	MAD-DU05		12/11/2016 2:15 PM	12/22/2016 2:02 PM	Restricted Soil
1612702-006A	MAD-DU06		12/11/2016 10:30 AM	12/22/2016 2:02 PM	Restricted Soil
1612702-007A	MAD-DU07		12/11/2016 12:30 PM	12/22/2016 2:02 PM	Restricted Soil

Client: Eurofins Lancaster Laboratories, Inc.

Project: Guam Samples

Concentrations reported with a J flag in the Qual field are values below the reporting limit (RL) but greater than the established method detection limit (MDL). There is greater uncertainty associated with these results and data should be considered as estimated. These analytes are not routinely reviewed nor narrated below as to their potential for being laboratory artifacts.

Concentrations reported with an E flag in the Qual field are values that exceed the upper quantification range. There is greater uncertainty associated with these results and data should be considered as estimated.

Any comments or problems with the analytical events associated with this report are noted below.

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection Date:	12/11/2016 11:05:00 AM
Project:	Guam Samples		
Lab ID:	1612702-001	Matrix: Restricte	ed Soil
Client Sample ID:	MAD-DU01		

Analysis	Result Q	ual DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Method:	SW7580				Analyst: DS
White Phosphorus	1.1 L	J 0.44	1.1	1.6 μg/	/Kg-dry	1	1/5/2017 1:40 PM
Surr: Tripropylphosphate	33.2		27-112	9	%Rec	1	1/5/2017 1:40 PM
Percent Moisture		Method:	ASTM-D2	216			Analyst: ASP
Percent Moisture	34	1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection Date:	12/11/2016 1:30:00 PM
Project:	Guam Samples		
Lab ID:	1612702-002	Matrix: Res	tricted Soil
Client Sample ID:	MAD-DU02		

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		N	lethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.42	1.0	1.5	µg/Kg-dry	1	1/5/2017 1:59 PM
Surr: Tripropylphosphate	29.3			27-112		%Rec	1	1/5/2017 1:59 PM
Percent Moisture		N	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	30		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Date Reported: 1/6/2017 Original

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 3:20:00 PM
Project:	Guam Samples			
Lab ID:	1612702-003	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU03			

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Μ	ethod:	SW7580				Analyst: DS
White Phosphorus	0.91	U	0.37	0.91	1.4	µg/Kg-dry	1	1/5/2017 2:19 PM
Surr: Tripropylphosphate	37.3			27-112		%Rec	1	1/5/2017 2:19 PM
Percent Moisture		Μ	ethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	22		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Date Reported: 1/6/2017 Original

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 9:00:00 AM
Project:	Guam Samples			
Lab ID:	1612702-004	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU04			

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		N	lethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.41	1.0	1.5	µg/Kg-dry	1	1/5/2017 2:38 PM
Surr: Tripropylphosphate	38.3			27-112		%Rec	1	1/5/2017 2:38 PM
Percent Moisture		N	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	30		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Date Reported: 1/6/2017 Original

Client:	Eurofins Lancaster Laboratories, Inc.	Collection	Date:	12/11/2016 2:15:00 PM
Project:	Guam Samples			
Lab ID:	1612702-005	Matrix:	Restricted Soil	
Client Sample ID:	MAD-DU05			

Analysis	Result C	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		N	lethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.42	1.0	1.5	µg/Kg-dry	1	1/5/2017 2:57 PM
Surr: Tripropylphosphate	39.9			27-112		%Rec	1	1/5/2017 2:57 PM
Percent Moisture		N	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	31		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection Date:	12/11/2016 10:30:00 AN
Project:	Guam Samples		
Lab ID:	1612702-006	Matrix: Restric	ed Soil
Client Sample ID:	MAD-DU06		

Analysis	Result	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		Ν	lethod:	SW7580				Analyst: DS
White Phosphorus	1.1	U	0.43	1.1	1.6	µg/Kg-dry	1	1/5/2017 3:17 PM
Surr: Tripropylphosphate	39.7			27-112		%Rec	1	1/5/2017 3:17 PM
Percent Moisture		M	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	32		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

WO#: 1612702

Client:	Eurofins Lancaster Laboratories, Inc.	Collection Date:	12/11/2016 12:30:00 PM
Project:	Guam Samples		
Lab ID:	1612702-007	Matrix: Restricte	ed Soil
Client Sample ID:	MAD-DU07		

Analysis	Result	Qual	DL	LOD	LOQ	Units	DF	Date Analyzed
White Phosphorus in Soil		N	lethod:	SW7580				Analyst: DS
White Phosphorus	1.0	U	0.42	1.0	1.6	µg/Kg-dry	1	1/5/2017 4:15 PM
Surr: Tripropylphosphate	46.3			27-112		%Rec	1	1/5/2017 4:15 PM
Percent Moisture		N	lethod:	ASTM-D2	216			Analyst: ASP
Percent Moisture	31		1.0	1.0	1.0	wt%	1	12/27/2016 11:30 AM

RTI Laboratories, Inc. - DATES REPORT

WO#: 1612702

Client: Eurofins Lancaster Laboratories, Inc.

Project: Guam Samples

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Leachate Date	Prep Date	Analysis Date
1612702-001A	MAD-DU01	12/11/2016 11:05 AM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 1:40 PM
1612702-002A	MAD-DU02	12/11/2016 1:30 PM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 1:59 PM
1612702-003A	MAD-DU03	12/11/2016 3:20 PM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 2:19 PM
1612702-004A	MAD-DU04	12/11/2016 9:00 AM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 2:38 PM
1612702-005A	MAD-DU05	12/11/2016 2:15 PM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 2:57 PM
1612702-006A	MAD-DU06	12/11/2016 10:30 AM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 3:17 PM
1612702-007A	MAD-DU07	12/11/2016 12:30 PM	Restricted Soil				
			PMOIST-Percen	t Moisture	12/	27/2016 11:30 AM	12/27/2016 11:30 AM
			SW_7580S-Whit	e Phosphorus in Soil		1/4/2017 8:52 AM	1/5/2017 4:15 PM

RTI Laboratories, Inc. - QC SUMMARY REPORT

WO#: 1612702

Client:	E	Eurofins Lancaster	Laboratorio	es, Inc.										
Project:	(Guam Samples									Batch ID:	4208	2	
Sample ID:	MB-42082	Samp Type:	MBLK		Test Code:	SW_7580S	Units:	µg/Kg	Prep Date	e:	1/4/2017 Ru	nNo:	91424	
Client ID:	PBS	Batch ID:	42082		TestNo:	SW7580			Analysis	Date:	1/5/2017 Se	qNo:	1787143	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
White Phosph	horus		1.1	1.1										U
Surr: Tripro	opylphosphat	9	69		250.0			27.6	27	112				
Sample ID:	LCS-42082	Samp Type	LCS		Test Code:	SW_7580S	Units:	µg/Kg	Prep Date	e:	1/4/2017 Ru	nNo:	91424	
Client ID:	LCSS	Batch ID:	42082		TestNo:	SW7580			Analysis	Date:	1/5/2017 Se	qNo:	1787144	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
White Phosph	horus		9.1	1.1	10.73	0		84.4	75	125				
Surr: Tripro	opylphosphat	9	100		249.9			41.6	27	112				
Sample ID:	LCSD-4208	Samp Type:	LCSD		Test Code:	SW_7580S	Units:	µg/Kg	Prep Date	e:	1/4/2017 Ru	nNo:	91424	
Client ID:	LCSS02	Batch ID:	42082	-	TestNo:	SW7580			Analysis	Date:	1/5/2017 Se	qNo:	1787145	
Analyte			Result	LOQ	SPK value	SPK Ref Val		%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
White Phosph	horus		9.6	1.1	10.73	0		89.5	75	125	9.055	5.81	25	
Surr: Tripro	opylphosphat	9	110		249.9			43.1	27	112		0	25	

RTI Laboratories, Inc. - QC SUMMARY REPORT

WO#: 1612702

Client:	Eurofins	Lancaster L	aboratories	s, Inc.										
Project:	Guam Sa	amples									Batch ID:	R912	82	
Sample ID:	1612665-001ADUP	Samp Type:	DUP	-	Test Code:	PMOIST	Units:	wt%	Prep Date	9:	12/27/2016 Ru	nNo:	91282	
Client ID:	ZZZZZZ	Batch ID:	R91282	-	TestNo:	D2216			Analysis	Date:	12/27/2016 Se	qNo:	1784653	
Analyte			Result	LOQ	SPK value	SPK Ref Va	l	%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
Percent Mois	sture		19	1.0							17.30	7.17	20	
Sample ID:	1612702-007ADUP	Samp Type:	DUP	-	Test Code:	PMOIST	Units:	wt%	Prep Date	e:	1 2/27/2016 Ru	nNo:	91282	
Client ID:	MAD-DU07LR1	Batch ID:	R91282	-	TestNo:	D2216			Analysis	Date:	12/27/2016 Se	qNo:	1784666	
Analyte			Result	LOQ	SPK value	SPK Ref Va	I	%REC	Low Limit	High Limit	RPD Ref Value	%RPD	RPDLimit	Qual
Percent Mois	sture		32	1.0							31.20	2.33	20	

RTI Laboratories, Inc. - Definitions and Acronyms

Date Reported: 1/6/2017 Original

DEFINITIONS:

DF: Dilution factor; the dilution factor applied to the prepared sample.

DL: Detection Limit; The lowest concentration of analyte that can be detected by the method in the applicable matrix.

DUP: Duplicate; aliquots of a sample taken from the same container under laboratory conditions and processed and analyzed independently, used to calculate Precision (%RPD).

LCS: Laboratory Control Sample; prepared by adding a known amount of target analytes to a specified amount of clean matrix and prepared with the batch of samples, used to calculate Accuracy (%REC).

LCSD: A duplicate LCS sample, used to calculate both Accuracy (%REC) and Precision (%RPD)

LOD: Limit of Detection; a laboratory verified concentration that can be detected at three times greater than the noise level. This concentration is equal to or greater than the DL.

LOQ: Limit of Quantitation; The lowest verified limit to which data is quantified without qualifications. Analyte concentrations below the LOQ are reported with a "J" qualifier.

MBLK: Method Blank; a sample of similar matrix that does not contain target analytes or interference that may impact the analytical results and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedure, used to assess and verify that the analytical process is free of contamination.

Mg/Kg or mg/L: Units of part per million (PPM) – milligram per Kilogram (W/W) or milligram per Liter (W/V).

MS: Matrix Spike; prepared by adding a known amount of target analytes to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available, used to calculate Accuracy (%REC)

MSD: A duplicate MS sample, used to calculate both Accuracy (%REC) and Precision (%RPD)

% REC: Percent Recovery of a known spike (SPK); a measure of accuracy expressed as a percentage of a measured (recovered) concentration compared to the known concentration (SPK) added to the sample. This is compared to the Low Limit and High Limit.

% RPD: Relative Percent Difference; a measure of precision expressed as a percentage of the difference between two duplicates relative to the average concentration. This is compared to the RPD Limit.

Qual: Qualifier that applies to the analyte reported

SPK: Spike; used in the QC section for both SPK Value and SPK Ref Val

Ug/Kg or ug/L: Units of part per billion (PPB) - microgram per Kilogram (W/W) or microgram per Liter (W/V).

QUALIFIERS:

*: Reported value exceeds the maximum allowed concentration by regulation or permit.

B: Analyte detected in the associated Method Blank at a concentration greater than 1/2 the LOQ

- G: ICB/CCB result is greater than the MDL
- H: Holding time for preparation or analysis has been exceeded
- J: Estimated result. Greater uncertainty is associated with this result and data reported is estimated.

M: Manual Integration used to determine area response

- P: Second column RPD exceeds 40%
- Q: % REC exceeded control limits. When applied to sample analytes denotes an associated LCS recovery that exceeded control limits.
- R: % RPD exceeds control limits

T: MBLK result is greater than 1/2 of the LOQ

- U: The analyte concentration is less than the DL. The result is reported as less than the LOD
- X: Matrix spike recovery for the noted analyte exceeded control limits. Applied to the MS/MSD parent sample.
- Y: Percent Difference/Drift in the associated CCV exceeded acceptance criteria.
- Z: Percent Difference/Drift in the associated ICV exceeded acceptance criteria.

🛟 e	u	ro	fi	n	S
-----	---	----	----	---	---

Analysis Request / Environmental Services Subcontracting Form

Lancaster Laboratories

For Lancaster Laboratories Use Only

Acct: Group No.: 1746738

Date: 8755030-36

12/21/16

11.17	.702	S Acct:		G	roup l	No.:		174	6738	}			Sam	ole Nos.:	New York and a standard stands	875	5030	-36	19011000m/manual				
1416	. 100											ŀ	Anal	yses Re	que	stec	ł						
Subcontractor:	RTI LABORATORI	ES					Matri	X				procession	Pres	ervatio	n Co	des							
LLI P.O.# :		Courier:	Fed Ex	x															Pres H=F		on Codes T=Thiosulfat	e	с С
Submit report to:	Kathy Binkley		Ext.:	13	93		θ	Internet States											8	0	B=NaOH O=Other		dn sa
	o: Kathy Binkley						Potable NPDES		iners	Nhite										12004	o outor		ample ed)
State where sam	ples were collected:	Guam					□ Potable □ NPDES	Name of Contract o	Contai	7580 for White orus.											Reference DH041715 a	nd	e of s; quest
Sample Identific	ation	Date Collected	Time Collected	Grab	Composite	Soil	Water	Other	Total # of Containers	Method 7580 Phosphorus.									a -	uest Le kage.	vel IV data		Temperature of samples upon receipt (if requested)
MAD-DU01		12/11/16	11:05		X	x		T	1	X									875	5030			
MAD-DU02		12/11/16	13:30		X	x			1	x									875	5031			
MAD-DU03		12/11/16	15:20		X	x			1	x									875	5032			
MAD-DU04		12/11/16	09:00		X	x			1	x									875	5033			
MAD-DU05		12/11/16	14:15		X	х			1	X									875	5034			
MAD-DU06		12/11/16	10:30		X	X			1	X									875	5035			
MAD-DU07		12/11/16	12:30		X	X			1	X	ļ								875	5036			
				ļ	<u> </u>			_					ļ										
			37ee		<u> </u>							<u> </u>								199412 (School School S			
Turnaround Time	Requested (TAT): Sta	ndard R <u>ush</u>					NTS:RT will not			ries: D)ry w	eight	repor	ting would	be a	oprop	oriate	for the	e White F	hosph	orus as thes	e soil	
Date Results are Email invoice to:	Needed:TA1 kbinkley@lancaste	is 10 busines: erlabs.com	s days		K	vat	ished b the f	N AN	hle	A		Date 12-1		Time 1550	Rec	ive	d øy	IJ	NS		Date 2-22-/6	Time 14	
					Rel	inqu	ished b	by:	ing	5		Date	Э	Time	Rec	eive	d by				Date	Time	
	tions (circled when require Reg) Type VI(Raw Data Type III (Reduced TX TRRP-13)	SDG Compl Yes No		Rel	inqu	ished b	by:	<u></u>			Date	9	Time	Red	eive	d by		07-742-1374.114.000-0-1-76.0		Date	Time	1
	-specific QC Required (I rnal Chain of Custody R				Rel	inqu	ished t	by.				Date	e	Time	Red	ceive	d by				Date	Time	

Lancaster Laboratories, Inc. 2425 New Holland Pike Lancaster, PA 17601 (717) 656-2300 Fax: (717) 656-6766

Copies: White copy should accompany samples to Lancaster Laboratories. The yellow copy should be retained by the samplers.

Ches Fart # 156148V-4/34 FIFT2 EXP 05/47 ** SHIPPING & RECEIVING SHIPPING & RECEIVING EUROFINS LANCASTER IN 2425 NEW HOLLAND PIKE LIVONIA MI 48150 (784) 422-0000 DEPT: 40 ANEASTER, PA 17601 SAMPLE RECEIVING RTI LABORATORIES, INC. 31628 GLENDALE AVENUE ... 5 lan Codh BILLIS . -THU - 22 DEC 10:30A PRIORITY OVERNIGHT CAL 1994 - 199 - 199 200 T 48150 MI-US DTW Tent A FedEX 6050X Express 54001/0428/777F ----J161016072601 uv

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL C Cfu CP Units F g IU kg L	Below Minimum Quantitation Level degrees Celsius colony forming units cobalt-chloroplatinate units degrees Fahrenheit gram(s) International Units kilogram(s) liter(s)	mg mL MPN N.D. ng NTU pg/L RL TNTC	milligram(s) milliliter(s) Most Probable Number none detected nanogram(s) nephelometric turbidity units picogram/liter Reporting Limit Too Numerous To Count
lb. m3	pound(s) cubic meter(s)	μg μL	microgram(s) microliter(s)
meq	milliequivalents	umhos/cm	micromhos/cm
<	less than		
>	greater than		
ppm		e equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.
ppb	parts per billion		
Drv weight	Results printed under this heading have be	een adjusted for mo	pisture content. This increases the analyte weight

Dry weight
basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight
concentration to approximate the value present in a similar sample without moisture. All other results are reported on an
as-received basis.

Laboratory Data Qualifiers:

- C Result confirmed by reanalysis
- E Concentration exceeds the calibration range
- J (or G, I, X) estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Report Date: January 26, 2017

Project: Tinian Phase I/II ESA

Submittal Date: 12/20/2016 Group Number: 1746737 SDG: TIN01 PO Number: 15167 State of Sample Origin: GU

Client Sample Description	
MAD-DU01 Composite Soil	
MAD-DU02 Composite Soil	
MAD-DU03 Composite Soil	
MAD-DU04 Composite Soil	
MAD-DU05 Composite Soil	
MAD-DU06 Composite Soil	
MAD-DU07 Composite Soil	

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>. To request copies of prior scopes of accreditation, contact your project manager.

1 Copy To Data Package Group

Respectfully Submitted,

Mataly K-2

Natalie R. Luciano Senior Specialist

(717) 556-7258

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU01 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 11:05 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755023 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0101 SDG#: TIN01-01

CAT No.	Analysis Name	CAS Number	Dry Result	:	Met	ry thod tection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg		ug/	/kg	ug/kg	
10725	Acenaphthene	83-32-9	0.84	U	0.8	34	2.1	1
10725	Acenaphthylene	208-96-8	0.42	U	0.4		2.1	1
10725	Anthracene	120-12-7	2.3	0	0.4		2.1	1
10725	Benzo(a)anthracene	56-55-3	0.84	U	0.8		2.1	1
10725	Benzo (a) pyrene	50-32-8	0.84	U	0.8		2.1	1
10725	Benzo (b) fluoranthene	205-99-2	2.1	J	0.0		2.1	1
10725	Benzo(g,h,i)perylene	191-24-2	0.84	U	0.0		2.1	1
10725	Benzo(k) fluoranthene	207-08-9	0.84	U	0.0		2.1	1
10725	Chrysene	218-01-9	1.3	J	0.4		2.1	1
10725				U	0.4			1
	Dibenz(a,h)anthracene	53-70-3	0.84				2.1	
10725	Fluoranthene	206-44-0	1.1	J	0.8		2.1	1
10725	Fluorene	86-73-7	0.84	U	0.8		2.1	1
10725	Indeno(1,2,3-cd)pyrene	193-39-5	0.84	U	0.8		2.1	1
10725	1-Methylnaphthalene	90-12-0	0.84	U	0.8		2.1	1
10725	2-Methylnaphthalene	91-57-6	1.4	J	0.8		2.1	1
10725	Naphthalene	91-20-3	2.4		0.8	34	2.1	1
10725	Phenanthrene	85-01-8	0.84	U	0.8	34	2.1	1
10725	Pyrene	129-00-0	0.84	U	0.8	34	2.1	1
Explos	sives SW-846	8330B Rev.2	ug/kg		ug	/kg	ug/kg	
	Oct. 20	06						
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	51	U	J 51		150	1
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	51	U	J 51		150	1
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	120	U	120)	370	1
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	120	U	J 120)	370	1
13413	3,5-Dinitroaniline	618-87-1	51	U	J 51		150	1
13413	1,3-Dinitrobenzene	99-65-0	50	U			150	1
13413	2,4-Dinitrotoluene	121-14-2	50	IJ	50		150	1
13413	2,6-Dinitrotoluene	606-20-2	140	U		J	290	1
13413	HMX	2691-41-0	260	U			540	1
13413	Nitrobenzene	98-95-3	120	U			370	1
13413	Nitroglycerin	55-63-0	1,000	U			3,000	1
13413	2-Nitrotoluene	88-72-2	93	U	,	500	190	1
13413	3-Nitrotoluene	99-08-1	140	U		`	270	1
13413	4-Nitrotoluene	99-99-0	140	U			270	1
13413	PETN	78-11-5	1,000	U U			3,000	1
			,	U U	,	100		
13413	RDX	121-82-4	50				150	1
13413	Tetryl	479-45-8	120	U)	370	1
13413	1,3,5-Trinitrobenzene	99-35-4	50	U			150	1
13413	2,4,6-Trinitrotoluene	118-96-7	55	U	55		150	1
Metals	s SW-846	6020	mg/kg		mg/	-	mg/kg	
06124	Antimony	7440-36-0	0.437		0.1		0.252	2
06125	Arsenic	7440-38-2	13.3		0.1	186	0.503	2
06127	Beryllium	7440-41-7	1.37		0.0)272	0.126	2
06128	Cadmium	7440-43-9	3.27		0.0	0488	0.126	2
06131	Chromium	7440-47-3	160		0.1	149	0.503	2
06133	Copper	7440-50-8	135		0.1		0.503	2
06135	Lead	7439-92-1	18.4			0367	0.252	2
				.1 1	untion of the fin			

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU01 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 11:05 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0101 SDG#: TIN01-01

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metal	S	SW-846	6020	mg/kg	mg/kg	mg/kg	
06139	Nickel		7440-02-0	31.9	0.210	0.503	2
06141	Selenium		7782-49-2	0.684	0.110	0.503	2
06142	Silver		7440-22-4	0.278	0.0297	0.126	2
06145	Thallium		7440-28-0	0.618	0.0365	0.126	2
06149	Zinc		7440-66-6	112	1.59	3.78	2
		SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.141	0.0124	0.124	1
Wet C	hemistry	SM 2540	G-1997	8	8	8	
00111	Moisture		n.a.	22.1	0.50	0.50	1
	Moisture represen 103 - 105 degrees as-received basis	Celsius. Th					

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	ory Sa	ample Analysi	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/29/2016	14:29	Linda M Hartenstine	1
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/14/2017	18:52	Jessica L Miller	1
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	: 1
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	08:10	Scott P Cuff	2
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	08:10	Scott P Cuff	2
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	09:34	Damary Valentin	1
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1

*=This limit was used in the evaluation of the final result

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU01 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 11:05 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0101 SDG#: TIN01-01

LL Sample # SW 8755023 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016 23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017 06:44	Stephanie A Sanchez	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU02 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 13:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755024 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0102 SDG#: TIN01-02

CAT No.	Analysis Name	CAS Number	Dry Result	5		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg			ug/kg	ug/kg	
10725	Acenaphthene	83-32-9	0.85	U		0.85	2.1	1
10725	Acenaphthylene	208-96-8	3.2	U		0.42	2.1	1
10725	Anthracene	120-12-7	0.42	U		0.42	2.1	1
10725	Benzo(a) anthracene	56-55-3	0.85	U		0.85	2.1	1
10725	Benzo (a) pyrene	50-32-8	0.85	U		0.85	2.1	1
10725	Benzo (b) fluoranthene	205-99-2	3.4	0		0.85	2.1	1
10725	Benzo(g,h,i)perylene	191-24-2	0.85	U		0.85	2.1	1
10725	Benzo(k) fluoranthene	207-08-9	0.85	U		0.85	2.1	1
10725				-			2.1	1
	Chrysene Dibara (a. b) anthronou	218-01-9	1.5	J		0.42		
10725	Dibenz(a, h) anthracene	53-70-3	0.85	U		0.85	2.1	1
10725	Fluoranthene	206-44-0	1.0	J		0.85	2.1	1
10725	Fluorene	86-73-7	1.2	J		0.85	2.1	1
10725	Indeno(1,2,3-cd)pyrene	193-39-5	0.85	U		0.85	2.1	1
10725	1-Methylnaphthalene	90-12-0	0.85	U		0.85	2.1	1
10725	2-Methylnaphthalene	91-57-6	0.85	U		0.85	2.1	1
10725	Naphthalene	91-20-3	2.1			0.85	2.1	1
10725	Phenanthrene	85-01-8	1.1	J		0.85	2.1	1
10725	Pyrene	129-00-0	0.85	U		0.85	2.1	1
Explos	sives SW-846	8330B Rev.2	ug/kg			ug/kg	ug/kg	
	Oct. 20	06						
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	53		U	53	160	1
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	53		IJ	53	160	1
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	130		U	130	390	1
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	130		U	130	390	1
13413	3,5-Dinitroaniline	618-87-1	53		U	53	160	1
13413	1,3-Dinitrobenzene	99-65-0	52		U	52	160	1
13413	2,4-Dinitrotoluene	121-14-2	52		U	52	160	1
13413	2,6-Dinitrotoluene	606-20-2	150		U	150	300	1
	HMX				U	270		1
13413		2691-41-0	270				560	
13413	Nitrobenzene	98-95-3	130		U	130	390	1
13413	Nitroglycerin	55-63-0	1,000		U	1,000	3,100	1
13413	2-Nitrotoluene	88-72-2	97		U	97	190	1
13413	3-Nitrotoluene	99-08-1	140		U	140	280	1
13413	4-Nitrotoluene	99-99-0	140		U	140	280	1
13413	PETN	78-11-5	1,000		U	1,000	3,100	1
13413	RDX	121-82-4	52		U	52	160	1
13413	Tetryl	479-45-8	130		U	130	390	1
13413	1,3,5-Trinitrobenzene	99-35-4	52		U	52	160	1
13413	2,4,6-Trinitrotoluene	118-96-7	57		U	57	160	1
Metal	s SW-846	6020	mg/kg			mg/kg	mg/kg	
06124	Antimony	7440-36-0	0.541			0.122	0.249	2
06125	Arsenic	7440-38-2	12.3			0.184	0.498	2
06127	Beryllium	7440-41-7	1.30			0.0269	0.125	2
06128	Cadmium	7440-43-9	3.80			0.0483	0.125	2
06131	Chromium	7440-47-3	152			0.147	0.498	2
06131	Copper	7440-47-3	132			0.147	0.498	2
06135	Lead	7439-92-1	26.2			0.0364	0.249	2
00133	LCUU					0.0364	0.449	4

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU02 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 13:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0102 SDG#: TIN01-02

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metal	s	SW-846	6020	mg/kg	mg/kg	mg/kg	
06139	Nickel		7440-02-0	30.1	0.208	0.498	2
06141	Selenium		7782-49-2	0.729	0.109	0.498	2
06142	Silver		7440-22-4	4.48	0.0294	0.125	2
06145	Thallium		7440-28-0	0.550	0.0361	0.125	2
06149	Zinc		7440-66-6	119	1.57	3.74	2
		SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.158	0.0125	0.125	1
Wet C	hemistry	SM 2540) G-1997	જ	8	8	
00111	Moisture Moisture represent: 103 - 105 degrees (as-received basis.					0.50	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	ory Sa	ample Analysi	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/29/2016	16:25	Linda M Hartenstine	1
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/14/2017	20:59	Jessica L Miller	1
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	1
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	08:13	Scott P Cuff	2
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	08:13	Scott P Cuff	2
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	09:47	Damary Valentin	1
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1

*=This limit was used in the evaluation of the final result

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU02 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 13:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0102 SDG#: TIN01-02

LL Sample # SW 8755024 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016 23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017 06:44	Stephanie A Sanchez	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU03 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 15:20 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755025 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0103 SDG#: TIN01-03

CAT No.	Analysis Name	CAS Number	Dry Result	:	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg		ug/kg	ug/kg	
10725	Acenaphthene	83-32-9	0.83	U	0.83	2.1	1
10725	Acenaphthylene	208-96-8	2.1	J	0.41	2.1	1
10725	Anthracene	120-12-7	0.41	U	0.41	2.1	1
10725	Benzo(a) anthracene	56-55-3	0.83	U	0.83	2.1	1
10725	Benzo (a) pyrene	50-32-8	0.86	J	0.83	2.1	1
10725	Benzo(b) fluoranthene	205-99-2	3.6	0	0.83	2.1	1
10725	Benzo(g,h,i)perylene	191-24-2	0.83	U	0.83	2.1	1
10725	Benzo(k) fluoranthene	207-08-9	1.0	J	0.83	2.1	1
10725	Chrysene	218-01-9	1.6	J	0.83	2.1	1
10725	-		0.83	U U		2.1	1
	Dibenz(a,h)anthracene	53-70-3		-	0.83		
10725	Fluoranthene	206-44-0	1.2	J	0.83	2.1	1
10725	Fluorene	86-73-7	1.3	J	0.83	2.1	1
10725	Indeno(1,2,3-cd)pyrene	193-39-5	0.83	U	0.83	2.1	1
10725	1-Methylnaphthalene	90-12-0	0.83	U	0.83	2.1	1
10725	2-Methylnaphthalene	91-57-6	1.8	J	0.83	2.1	1
10725	Naphthalene	91-20-3	4.9		0.83	2.1	1
10725	Phenanthrene	85-01-8	1.3	J	0.83	2.1	1
10725	Pyrene	129-00-0	1.0	J	0.83	2.1	1
Explos	sives SW-846	8330B Rev.2	ug/kg		ug/kg	ug/kg	
	Oct. 20	06					
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	51	U	51	150	1
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	51	U	51	150	1
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	120	U	120	370	1
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	120	U	120	370	1
13413	3,5-Dinitroaniline	618-87-1	51	U	51	150	1
13413	1,3-Dinitrobenzene	99-65-0	50	U	50	150	1
13413	2,4-Dinitrotoluene	121-14-2	50	U	50	150	1
13413	2,6-Dinitrotoluene	606-20-2	140	U	140	280	1
13413	НМХ	2691-41-0	260	U	260	530	1
13413	Nitrobenzene	98-95-3	120	U	120	370	1
13413	Nitroglycerin	55-63-0	990	U	990	3,000	1
13413	2-Nitrotoluene	88-72-2	93	U	93	190	1
13413	3-Nitrotoluene	99-08-1	140	U	140	270	1
13413	4-Nitrotoluene	99-99-0	140	U	140	270	1
13413	PETN	78-11-5	990	U	990	3,000	1
13413	RDX	121-82-4		U	50	150	1
			50	U U			1
13413	Tetryl	479-45-8	120		120	370	
13413	1,3,5-Trinitrobenzene	99-35-4	50	U	50	150	1
13413	2,4,6-Trinitrotoluene	118-96-7	54	U	54	150	1
Metals	s SW-846		mg/kg		mg/kg	mg/kg	
06124	Antimony	7440-36-0	0.959		0.108	0.220	2
06125	Arsenic	7440-38-2	18.0		0.162	0.439	2
06127	Beryllium	7440-41-7	1.20		0.0237	0.110	2
06128	Cadmium	7440-43-9	4.55		0.0426	0.110	2
06131	Chromium	7440-47-3	167		0.130	0.439	2
06133	Copper	7440-50-8	156		0.111	0.439	2
06135	Lead	7439-92-1	30.9		0.0321	0.220	2
		* 171. 1. 11		(1 1			

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU03 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 15:20 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0103 SDG#: TIN01-03

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metal	s	SW-846	6020	mg/kg	mg/kg	mg/kg	
06139	Nickel		7440-02-0	45.8	0.183	0.439	2
06141	Selenium		7782-49-2	0.670	0.0960	0.439	2
06142	Silver		7440-22-4	0.851	0.0259	0.110	2
06145	Thallium		7440-28-0	0.479	0.0318	0.110	2
06149	Zinc		7440-66-6	117	1.39	3.29	2
		SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.165	0.0126	0.126	1
Wet C	hemistry	SM 2540) G-1997	8	8	8	
00111	Moisture		n.a.	20.8	0.50	0.50	1
	Moisture represent 103 - 105 degrees as-received basis.						

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	ory Sa	ample Analysi	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/29/2016	17:03	Linda M Hartenstine	1
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/14/2017	21:41	Jessica L Miller	1
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	r 1
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	08:22	Scott P Cuff	2
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	08:22	Scott P Cuff	2
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	09:54	Damary Valentin	1
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1

*=This limit was used in the evaluation of the final result

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU03 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/11/2016 15:20 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0103 SDG#: TIN01-03

LL Sample # SW 8755025 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016 23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017 06:44	Stephanie A Sanchez	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU04 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 09:00 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755026 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0104 SDG#: TIN01-04

CAT No.	Analysis Name	CAS Number	Dry Result	-		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg			ug/kg	ug/kg	
10725	Acenaphthene	83-32-9	0.93	U		0.93	2.3	1
10725	Acenaphthylene	208-96-8	4.1			0.47	2.3	1
10725	Anthracene	120-12-7	0.47	U		0.47	2.3	1
10725	Benzo(a)anthracene	56-55-3	0.93	U		0.93	2.3	1
10725	Benzo(a)pyrene	50-32-8	0.93	U		0.93	2.3	1
10725	Benzo(b) fluoranthene	205-99-2	2.4	0		0.93	2.3	1
10725	Benzo(q,h,i)perylene	191-24-2	0.93	U		0.93	2.3	1
10725	Benzo(k) fluoranthene	207-08-9	0.93	U		0.93	2.3	1
10725	Chrysene	218-01-9	1.0	J		0.47	2.3	1
10725	Dibenz (a, h) anthracene	53-70-3	0.93	U		0.93	2.3	1
10725	Fluoranthene	206-44-0	0.93	U		0.93	2.3	1
10725	Fluorene	86-73-7	1.6	J		0.93	2.3	1
10725		193-39-5	0.93	U		0.93	2.3	1
	Indeno(1,2,3-cd)pyrene			J				
10725	1-Methylnaphthalene	90-12-0	1.6	J		0.93	2.3	1 1
10725	2-Methylnaphthalene	91-57-6	3.1			0.93	2.3	
10725	Naphthalene	91-20-3	3.0			0.93	2.3	1
10725	Phenanthrene	85-01-8	0.93	U		0.93	2.3	1
10725	Pyrene	129-00-0	0.93	U		0.93	2.3	1
Explo	sives SW-846	8330B Rev.2	ug/kg			ug/kg	ug/kg	
	Oct. 20	06						
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	58	τ	U	58	170	1
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	58	τ	U	58	170	1
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	140	τ	U	140	420	1
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	140	τ	U	140	420	1
13413	3,5-Dinitroaniline	618-87-1	58	τ	U	58	170	1
13413	1,3-Dinitrobenzene	99-65-0	57	τ	U	57	170	1
13413	2,4-Dinitrotoluene	121-14-2	57	τ	U	57	170	1
13413	2,6-Dinitrotoluene	606-20-2	160	τ	U	160	330	1
13413	НМХ	2691-41-0	300			300	610	1
13413	Nitrobenzene	98-95-3	140			140	420	1
13413	Nitroglycerin	55-63-0	1,100			1,100	3,400	1
13413	2-Nitrotoluene	88-72-2	110			110	210	1
13413	3-Nitrotoluene	99-08-1	160			160	310	1
13413	4-Nitrotoluene	99-99-0	160			160	310	1
13413	PETN	78-11-5	1,100	-	-	1,100	3,400	1
13413	RDX	121-82-4	57			57	170	1
13413	Tetryl	479-45-8	140	-	-	140	420	1
13413	1,3,5-Trinitrobenzene	99-35-4	57	-	-	57	170	1
13413	2,4,6-Trinitrotoluene	118-96-7	62			62	170	1
Motol		6020	mg/kg			mg/kg	mg/kg	
Metal: 06124	s SW-846 Antimony	7440-36-0	0.389			0.122	0.248	2
06124 06125	Antimony Arsenic	7440-36-0	0.389			0.122	0.248	2
			14.7					2
06127	Beryllium	7440-41-7				0.0268	0.124	
06128	Cadmium	7440-43-9	2.91			0.0482	0.124	2
06131	Chromium	7440-47-3	181			0.147	0.497	2
06133	Copper	7440-50-8	152			0.125	0.497	2 2
06135	Lead	7439-92-1	20.6			0.0363	0.248	۷

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU04 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 09:00 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0104 SDG#: TIN01-04

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metal	s	SW-846	6020	mg/kg	mg/kg	mg/kg	
06139	Nickel		7440-02-0	35.5	0.207	0.497	2
06141	Selenium		7782-49-2	0.799	0.109	0.497	2
06142	Silver		7440-22-4	0.221	0.0293	0.124	2
06145	Thallium		7440-28-0	0.638	0.0360	0.124	2
06149	Zinc		7440-66-6	122	1.57	3.73	2
		SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.171	0.0139	0.139	1
Wet C	hemistry	SM 2540	G-1997	8	%	8	
00111	Moisture		n.a.	29.4	0.50	0.50	1
	Moisture represen 103 - 105 degrees as-received basis	s Celsius. Th		-	1 0		

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor				
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/30/2016	10:07	Linda M Hartenstine	1				
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1				
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/14/2017	23:49	Jessica L Miller	1				
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	1				
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	08:26	Scott P Cuff	2				
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	08:26	Scott P Cuff	2				
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	09:57	Damary Valentin	1				
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1				

*=This limit was used in the evaluation of the final result

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU04 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 09:00 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0104 SDG#: TIN01-04

LL Sample # SW 8755026 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016 23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017 06:44	Stephanie A Sanchez	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU05 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 14:15 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755027 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0105 SDG#: TIN01-05

CAT No.	Analysis Name	CAS Number	Dry Result	:		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg			ug/kg	ug/kg			
10725	Acenaphthene	83-32-9	0.95	U		0.95	2.4	1		
10725	Acenaphthylene	208-96-8	7.1	-		0.47	2.4	1		
10725	Anthracene	120-12-7	0.47	U		0.47	2.4	1		
10725	Benzo(a) anthracene	56-55-3	0.95	U		0.95	2.4	1		
10725	Benzo (a) pyrene	50-32-8	0.95	U		0.95	2.4	1		
10725	Benzo (b) fluoranthene	205-99-2	4.5	0		0.95	2.4	1		
10725	Benzo(g,h,i)perylene	191-24-2	0.95	U		0.95	2.4	1		
10725	Benzo(k) fluoranthene	207-08-9	0.95	U		0.95	2.4	1		
10725	Chrysene	218-01-9	2.7	0		0.47	2.4	1		
10725	Dibenz (a, h) anthracene	53-70-3	0.95	U		0.95	2.4	1		
10725	Fluoranthene	206-44-0	2.3	J		0.95	2.4	1		
10725	Fluorene	86-73-7	1.5	J		0.95	2.4	1		
10725	Indeno(1,2,3-cd)pyrene	193-39-5	0.95	U		0.95	2.4	1		
10725	1-Methylnaphthalene	90-12-0	1.6	J		0.95	2.4	1		
10725	2-Methylnaphthalene	91-57-6	2.8	U		0.95	2.4	1		
10725	Naphthalene	91-20-3	4.3			0.95	2.4	1		
10725	Phenanthrene		4.3	J		0.95	2.4	1		
10725	Pyrene	85-01-8 129-00-0	2.1	J		0.95	2.4	1		
10725	Pyrelle	129-00-0	2.1	U		0.95	2.4	Ţ		
Explos	sives SW-846	8330B Rev.2	ug/kg			ug/kg	ug/kg			
Oct. 2006										
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	58	U	J	58	170	1		
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	58	U	J	58	170	1		
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	140	U	J	140	430	1		
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	140	U	J	140	430	1		
13413	3,5-Dinitroaniline	618-87-1	58	U	J	58	170	1		
13413	1,3-Dinitrobenzene	99-65-0	57	U	J	57	170	1		
13413	2,4-Dinitrotoluene	121-14-2	57	U	J	57	170	1		
13413	2,6-Dinitrotoluene	606-20-2	160	U		160	330	1		
13413	HMX	2691-41-0	300	Ŭ		300	610	1		
13413	Nitrobenzene	98-95-3	140	U		140	430	1		
13413	Nitroglycerin	55-63-0	1,100	U		1,100	3,400	1		
13413	2-Nitrotoluene	88-72-2	110	U		110	210	1		
13413	3-Nitrotoluene	99-08-1	160	U	-	160	310	1		
13413	4-Nitrotoluene	99-99-0	160	U		160	310	1		
13413	PETN	78-11-5	1,100	U		1,100	3,400	1		
13413	RDX	121-82-4	57	U		57	170	1		
13413	Tetryl	479-45-8	140	U		140	430	1		
13413	1,3,5-Trinitrobenzene	99-35-4	57	U	-	57	170	1		
13413	2,4,6-Trinitrotoluene	118-96-7	62	U		62	170	1		
	, ,									
Metals	s SW-846	6020	mg/kg			mg/kg	mg/kg			
06124	Antimony	7440-36-0	0.482			0.138	0.281	2		
06125	Arsenic	7440-38-2	12.5			0.207	0.562	2		
06127	Beryllium	7440-41-7	1.18			0.0303	0.140	2		
06128	Cadmium	7440-43-9	2.80			0.0545	0.140	2		
06131	Chromium	7440-47-3	132			0.166	0.562	2		
06133	Copper	7440-50-8	133			0.142	0.562	2		
06135	Lead	7439-92-1	20.6			0.0410	0.281	2		
-		* This limit m		.1 1		C 1 1.				

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU05 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 14:15 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0105 SDG#: TIN01-05

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor		
Metal	s i	SW-846	6020	mg/kg	mg/kg	mg/kg			
06139	Nickel		7440-02-0	28.4	0.235	0.562	2		
06141	Selenium		7782-49-2	0.753	0.123	0.562	2		
06142	Silver		7440-22-4	0.201	0.0331	0.140	2		
06145	Thallium		7440-28-0	0.477	0.0407	0.140	2		
06149	Zinc		7440-66-6	102	1.78	4.21	2		
	1	SW-846	7471A	mg/kg	mg/kg	mg/kg			
00159	Mercury		7439-97-6	0.134 J	0.0140	0.140	1		
Wet C	hemistry	SM 2540	G-1997	8	8	96			
00111	Moisture		n.a.	29.5	0.50	0.50	1		
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.								

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor				
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/30/2016	10:43	Linda M Hartenstine	1				
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1				
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/15/2017	00:31	Jessica L Miller	1				
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	: 1				
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	08:29	Scott P Cuff	2				
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	08:29	Scott P Cuff	2				
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	09:59	Damary Valentin	1				
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1				

*=This limit was used in the evaluation of the final result

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU05 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 14:15 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0105 SDG#: TIN01-05

LL Sample # SW 8755027 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016 23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017 06:44	Stephanie A Sanchez	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU06 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 10:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755028 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0106 SDG#: TIN01-06

CAT No.	Analysis Name	CAS Number	Dry Result	-		Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor		
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg			ug/kg	ug/kg			
10725	Acenaphthene	83-32-9	0.96	U		0.96	2.4	1		
10725	Acenaphthylene	208-96-8	12	0		0.48	2.4	1		
10725	Anthracene	120-12-7	0.54	J		0.48	2.4	1		
10725	Benzo(a) anthracene	56-55-3	0.96	U		0.96	2.4	1		
10725	Benzo (a) pyrene	50-32-8	0.96	U		0.96	2.4	1		
10725	Benzo (b) fluoranthene	205-99-2	5.0	0		0.96	2.4	1		
10725	Benzo(g,h,i)perylene	191-24-2	0.96	U		0.96	2.4	1		
10725	Benzo(k) fluoranthene	207-08-9	0.96	U		0.96	2.4	1		
10725	Chrysene	218-01-9	2.4	J		0.48	2.4	1		
10725	Dibenz(a, h) anthracene		2.4	U		0.48	2.4	1		
10725	Fluoranthene	53-70-3		J			2.4	1		
		206-44-0	1.5			0.96		1		
10725	Fluorene	86-73-7	2.2	J		0.96	2.4			
10725	Indeno(1,2,3-cd)pyrene	193-39-5	0.96	U		0.96	2.4	1		
10725	1-Methylnaphthalene	90-12-0	1.7	J		0.96	2.4	1		
10725	2-Methylnaphthalene	91-57-6	3.3			0.96	2.4	1		
10725	Naphthalene	91-20-3	5.6			0.96	2.4	1		
10725	Phenanthrene	85-01-8	2.2	J		0.96	2.4	1		
10725	Pyrene	129-00-0	1.5	J		0.96	2.4	1		
Explos	sives SW-846	8330B Rev.2	ug/kg			ug/kg	ug/kg			
- Oct. 2006										
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	59		U	59	170	1		
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	59		U	59	170	1		
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	140		U	140	430	1		
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	140		U	140	430	1		
13413	3,5-Dinitroaniline	618-87-1	59		U	59	170	1		
13413	1,3-Dinitrobenzene	99-65-0	57		U	57	170	1		
13413	2,4-Dinitrotoluene	121-14-2	57		U	57	170	1		
13413	2,6-Dinitrotoluene	606-20-2	160		U	160	330	1		
13413	HMX	2691-41-0	300		U	300	610	1		
13413	Nitrobenzene	98-95-3	140		U	140	430	1		
13413	Nitroglycerin	55-63-0	1,100		U	1,100	3,400	1		
13413	2-Nitrotoluene	88-72-2	110		U	110	210	1		
13413	3-Nitrotoluene	99-08-1	160		U	160	310	1		
13413	4-Nitrotoluene	99-99-0	160		U	160	310	1		
13413	PETN	78-11-5	1,100		U	1,100	3,400	1		
13413	RDX	121-82-4	57		U	57	170	1		
13413	Tetryl	479-45-8	140		U	140	430	1		
13413	1,3,5-Trinitrobenzene	99-35-4	57		U	57	170	1		
13413	2,4,6-Trinitrotoluene	118-96-7	63		U	63	170	1		
Matal		6020	mg/kg			mg/kg	mg/kg			
Metals 06124	s SW-846 Antimony	7440-36-0	0.494			0.138	0.280	2		
06124 06125	Arsenic	7440-36-0	0.494 13.6			0.138	0.280	2		
06125		7440-38-2	1.30			0.0303	0.140	2		
06127 06128	Beryllium Cadmium							2		
06128 06131	Cadmium Chromium	7440-43-9	2.84 150			0.0544	0.140	2		
		7440-47-3				0.166	0.560	2		
06133 06135	Copper Lead	7440-50-8	147			0.141 0.0409	0.560 0.280	2		
00135	LEau	7439-92-1	21.7				0.280	4		

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU06 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 10:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0106 SDG#: TIN01-06

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
Metal	s	SW-846	6020	mg/kg	mg/kg	mg/kg	
06139	Nickel		7440-02-0	33.3	0.234	0.560	2
06141	Selenium		7782-49-2	0.803	0.122	0.560	2
06142	Silver		7440-22-4	0.164	0.0331	0.140	2
06145	Thallium		7440-28-0	0.589	0.0406	0.140	2
06149	Zinc		7440-66-6	107	1.77	4.20	2
		SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.142	0.0140	0.140	1
Wet C	hemistry	SM 2540) G-1997	8	8	8	
00111	Moisture		n.a.	30.7	0.50	0.50	1
	Moisture represen 103 - 105 degrees as-received basis	Celsius. Th					

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor				
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/30/2016	11:20	Linda M Hartenstine	1				
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1				
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/15/2017	01:14	Jessica L Miller	1				
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	1				
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	08:32	Scott P Cuff	2				
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	08:32	Scott P Cuff	2				
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	10:02	Damary Valentin	1				
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1				

*=This limit was used in the evaluation of the final result

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU06 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 10:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0106 SDG#: TIN01-06

LL Sample # SW 8755028 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016 23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017 06:44	Stephanie A Sanchez	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU07 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 12:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02 LL Sample # SW 8755029 LL Group # 1746737 Account # 30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

T0107 SDG#: TIN01-07

CAT No.	Analysis Name	CAS Number	Dry Result	-	Dry Method Detection Limit*	Dry Limit of Quantitation	Dilution Factor
GC/MS	Semivolatiles SW-846	8270C SIM	ug/kg		ug/kg	ug/kg	
10725	Acenaphthene	83-32-9	1.1	J	1.1	2.7	1
10725	Acenaphthylene	208-96-8	14		0.53	2.7	1
10725	Anthracene	120-12-7	0.53	J	0.53	2.7	1
10725	Benzo(a)anthracene	56-55-3	1.1	U	1.1	2.7	1
10725	Benzo(a)pyrene	50-32-8	1.1	U	1.1	2.7	1
10725	Benzo(b)fluoranthene	205-99-2	4.9		1.1	2.7	1
10725	Benzo(g,h,i)perylene	191-24-2	1.1	U	1.1	2.7	1
10725	Benzo(k)fluoranthene	207-08-9	1.1	U	1.1	2.7	1
10725	Chrysene	218-01-9	1.9	J	0.53	2.7	1
10725	Dibenz(a,h)anthracene	53-70-3	1.1	U	1.1	2.7	1
10725	Fluoranthene	206-44-0	1.3	J	1.1	2.7	1
10725	Fluorene	86-73-7	2.3	J	1.1	2.7	1
10725	Indeno(1,2,3-cd)pyrene	193-39-5	1.1	U	1.1	2.7	1
10725	1-Methylnaphthalene	90-12-0	1.1	U	1.1	2.7	1
10725	2-Methylnaphthalene	91-57-6	1.9	J	1.1	2.7	1
10725	Naphthalene	91-20-3	3.0		1.1	2.7	1
10725	Phenanthrene	85-01-8	1.6	J	1.1	2.7	1
10725	Pyrene	129-00-0	1.3	J	1.1	2.7	1

The recovery for the sample internal standard is outside the QC acceptance limits. The following corrective action was taken: The sample was re-analyzed and internal standard areas are again outside of the QC acceptance limits, indicating a matrix effect. The reported data is from the initial analysis of the sample.

Explo	sives SW-846	8330B Rev.2	ug/kg		ug/kg	ug/kg	
	Oct. 20	06					
13413	4-Amino-2,6-Dinitrotoluene	19406-51-0	64	U	64	190	1
13413	2-Amino-4,6-Dinitrotoluene	35572-78-2	64	U	64	190	1
13413	2,6-Diamino-4-nitrotoluene	59229-75-3	160	U	160	470	1
13413	2,4-Diamino-6-nitrotoluene	6629-29-4	160	U	160	470	1
13413	3,5-Dinitroaniline	618-87-1	64	U	64	190	1
13413	1,3-Dinitrobenzene	99-65-0	63	U	63	190	1
13413	2,4-Dinitrotoluene	121-14-2	63	U	63	190	1
13413	2,6-Dinitrotoluene	606-20-2	180	U	180	360	1
13413	HMX	2691-41-0	330	U	330	670	1
13413	Nitrobenzene	98-95-3	160	U	160	470	1
13413	Nitroglycerin	55-63-0	1,300	U	1,300	3,800	1
13413	2-Nitrotoluene	88-72-2	120	U	120	240	1
13413	3-Nitrotoluene	99-08-1	170	U	170	350	1
13413	4-Nitrotoluene	99-99-0	170	U	170	350	1
13413	PETN	78-11-5	1,300	U	1,300	3,800	1
13413	RDX	121-82-4	63	U	63	190	1
13413	Tetryl	479-45-8	160	U	160	470	1
13413	1,3,5-Trinitrobenzene	99-35-4	63	U	63	190	1
13413	2,4,6-Trinitrotoluene	118-96-7	69	U	69	190	1
Metal	s SW-846	6020	mg/kg		mg/kg	mg/kg	
06124	Antimony	7440-36-0	0.419		0.143	0.291	2
06125	Arsenic	7440-38-2	13.5		0.215	0.582	2

*=This limit was used in the evaluation of the final result

Analysis Report

Drv

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU07 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 12:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0107 SDG#: TIN01-07

LL Sample	#	SW 8755029
LL Group	#	1746737
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Drv

CAT No.	Analysis Name		CAS Number	Dry Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Metal	s	SW-846	6020	mg/kg	mg/kg	mg/kg	
06127	Beryllium		7440-41-7	1.39	0.0314	0.145	2
06128	Cadmium		7440-43-9	2.91	0.0564	0.145	2
06131	Chromium		7440-47-3	159	0.172	0.582	2
06133	Copper		7440-50-8	138	0.147	0.582	2
06135	Lead		7439-92-1	29.7	0.0425	0.291	2
06139	Nickel		7440-02-0	31.0	0.243	0.582	2
06141	Selenium		7782-49-2	0.774	0.127	0.582	2
06142	Silver		7440-22-4	0.173	0.0343	0.145	2
06145	Thallium		7440-28-0	0.605	0.0422	0.145	2
06149	Zinc		7440-66-6	106	1.84	4.36	2
		SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	0.137 J	0.0152	0.152	1
Wet C	hemistry	SM 254) G-1997	8	8	20	
00111	Moisture		n.a.	37.5	0.50	0.50	1
	Moisture represents	s the loss	in weight of the	sample after ove	n drying at		

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
10725	SIM SVOA (microwave)	SW-846 8270C SIM	1	16357SLJ026	12/30/2016	11:56	Linda M Hartenstine	1			
10811	BNA Soil Microwave SIM	SW-846 3546	1	16357SLJ026	12/23/2016	16:45	Elizabeth E Donovan	1			
13413	Nitroaromatics/Amines 8330B(s)	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/15/2017	01:56	Jessica L Miller	1			
13433	Nitroaromatic/Amine Ext 8330B	SW-846 8330B Rev.2 Oct. 2006	1	170040017A	01/04/2017	14:30	David V Hershey Jr	: 1			
06124	Antimony	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06125	Arsenic	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06127	Beryllium	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06128	Cadmium	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06131	Chromium	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06133	Copper	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06135	Lead	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06139	Nickel	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			
06141	Selenium	SW-846 6020	1	170035708002B	01/04/2017	07:51	Scott P Cuff	2			
06142	Silver	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2			

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MAD-DU07 Composite Soil Tinian Phase I/II ESA

Project Name: Tinian Phase I/II ESA

Collected: 12/12/2016 12:30 by MK

Submitted: 12/20/2016 11:30 Reported: 01/26/2017 18:02

T0107 SDG#: TIN01-07

LL Sample	#	SW 8755029
LL Group	#	1746737
Account	#	30099

EA Engineering, Science & Tech 615 Piikoi Street Suite 515 Honolulu HI 96814

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	Analysis Analyst Date and Time		Dilution Factor
06145	Thallium	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2
06149	Zinc	SW-846 6020	1	170035708002A	01/04/2017	07:51	Scott P Cuff	2
00159	Mercury	SW-846 7471A	1	163585711002	12/28/2016	10:04	Damary Valentin	1
05708	ICP-ICPMS - SW, 3050B - U3	SW-846 3050B	1	170035708002	01/03/2017	17:45	Barbara A Kane	1
05711	Hg-SW, 7471A - U3	SW-846 7471A	1	163585711002	12/27/2016	23:45	Annamaria Kuhns	1
00111	Moisture	SM 2540 G-1997	1	17026820001A	01/26/2017	06:44	Stephanie A Sanchez	1

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: EA Engineering, Science & Tech Reported: 01/26/2017 18:02 Group Number: 1746737

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result		MDL**	LOQ
	ug/kg		ug/kg	ug/kg
Batch number: 16357SLJ026	Sample	number	(s): 8755	5023-8755029
Acenaphthene	0.67	U	0.67	1.7
Acenaphthylene	0.33	U	0.33	1.7
Anthracene	0.33	U	0.33	1.7
Benzo(a)anthracene	0.67	U	0.67	1.7
Benzo(a)pyrene	0.67	U	0.67	1.7
Benzo(b)fluoranthene	0.67	U	0.67	1.7
Benzo(g,h,i)perylene	0.67	U	0.67	1.7
Benzo(k)fluoranthene	0.67	U	0.67	1.7
Chrysene	0.33	U	0.33	1.7
Dibenz(a,h)anthracene	0.67	U	0.67	1.7
Fluoranthene	0.67	U	0.67	1.7
Fluorene	0.67	U	0.67	1.7
Indeno(1,2,3-cd)pyrene	0.67	U	0.67	1.7
1-Methylnaphthalene	0.67	U	0.67	1.7
2-Methylnaphthalene	0.67	U	0.67	1.7
Naphthalene	0.67	U	0.67	1.7
Phenanthrene	0.67	U	0.67	1.7
Pyrene	0.67	U	0.67	1.7
Batch number: 170040017A	Sample	number	(s): 8755	5023-8755029
4-Amino-2,6-Dinitrotoluene	41	U	41	120
2-Amino-4,6-Dinitrotoluene	41	U	41	120
2,6-Diamino-4-nitrotoluene	100	U	100	300
2,4-Diamino-6-nitrotoluene	100	U	100	300
3,5-Dinitroaniline	41	U	41	120
1,3-Dinitrobenzene	40	U	40	120
2,4-Dinitrotoluene	40	U	40	120
2,6-Dinitrotoluene	110	U	110	230
HMX	210	U	210	430
Nitrobenzene	100	U	100	300
Nitroqlycerin	800	U	800	2,400
2-Nitrotoluene	75	U	75	150
3-Nitrotoluene	110	U	110	220
4-Nitrotoluene	110	U	110	220
PETN	800	U	800	2,400
RDX	40	U	40	120
Tetryl	100	U	100	300
1,3,5-Trinitrobenzene	40	U	40	120
2,4,6-Trinitrotoluene	44	U	44	120
	mg/kg		mg/kg	mg/kg

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: EA Engineering, Science & Tech Reported: 01/26/2017 18:02 Group Number: 1746737

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	mg/kg	mg/kg	mg/kg
Batch number: 163585711002	Sample number	(s): 87550	23-8755029
Mercury	0.0100 U	0.0100	0.100
Batch number: 170035708002A Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Silver Thallium Zinc	Sample number 0.0982 U 0.148 U 0.0216 U 0.0388 U 0.118 U 0.101 U 0.0292 U 0.167 U 0.0236 U 0.0290 U 1.26 U	(s): 87550 0.0982 0.148 0.0216 0.0388 0.118 0.101 0.0292 0.167 0.0236 0.0290 1.26	0.200 0.400 0.100 0.400 0.400 0.200 0.200 0.400 0.100
Batch number: 170035708002B	Sample number	(s): 87550	23-8755029
Selenium	0.0874 U	0.0874	0.400

LCS/LCSD

Analysis Name	LCS Spike Added ug/kg	LCS Conc ug/kg	LCSD Spike Added ug/kg	LCSD Conc ug/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 16357SLJ026	Sample numbe	r(s): 87550)23-8755029						
Acenaphthene	33.33	30.82			92		72-118		
Acenaphthylene	33.33	26.95			81		68-100		
Anthracene	33.33	28.83			86		69-109		
Benzo(a)anthracene	33.33	30.09			90		65-111		
Benzo(a)pyrene	33.33	30.61			92		65-110		
Benzo(b)fluoranthene	33.33	31.76			95		63-122		
Benzo(g,h,i)perylene	33.33	29.69			89		58-109		
Benzo(k)fluoranthene	33.33	30.53			92		60-110		
Chrysene	33.33	29.31			88		62-108		
Dibenz(a,h)anthracene	33.33	32.33			97		63-114		
Fluoranthene	33.33	29.13			87		67-108		
Fluorene	33.33	30.19			91		68-113		
Indeno(1,2,3-cd)pyrene	33.33	30.83			93		58-111		
1-Methylnaphthalene	33.33	27.89			84		80-106		
2-Methylnaphthalene	33.33	28.14			84		74-110		
Naphthalene	33.33	25.29			76		64-106		
Phenanthrene	33.33	28.17			85		70-106		
Pyrene	33.33	27.6			83		64-105		
	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 170040017A	Sample numbe	r(s): 87550	23-8755029						

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: EA Engineering, Science & Tech Reported: 01/26/2017 18:02 Group Number: 1746737

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/kg	LCS Conc ug/kg	LCSD Spike Added ug/kg	LCSD Conc ug/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
4-Amino-2,6-Dinitrotoluene	2010	1666.73	2010	1683.01	83	84	42-138	1	50
2-Amino-4,6-Dinitrotoluene	2010	1666.73	2010	1683.01	83	84	42-138	1	50
2,6-Diamino-4-nitrotoluene	1800	1904.36	1800	1802.22	106	100	80-115	6	50
2,4-Diamino-6-nitrotoluene	1790	1904.36	1790	1802.22	106	101	79-115	6	50
3,5-Dinitroaniline	2010	1700.44	2010	1736.64	85	86	47-141	2	50
1,3-Dinitrobenzene	2000	1759.56	2000	1811.38	88	91	54-140	3	50
2,4-Dinitrotoluene	2000	1799.14	2000	2040.51	90	102	52-137	13	50
2,6-Dinitrotoluene	2010	1836.02	2010	2043.12	91	102	51-138	11	50
HMX	2000	1862.32	2000	1950.85	93	98	29-148	5	50
Nitrobenzene	2010	1793.35	2010	1783.29	89	89	64-138	1	50
Nitroglycerin	22100	14667.82	22100	15146.36	66	69	45-137	3	50
2-Nitrotoluene	2010	1839.79	2010	2307.53	92	115	57-135	23	50
3-Nitrotoluene	2010	1787.39	2010	2149.93	89	107	57-135	18	50
4-Nitrotoluene	2000	1971.59	2000	2371.82	99	119	53-133	18	50
PETN	22200	13935.74	22200	14249.87	63	64	36-143	2	50
RDX	2010	1681.24	2010	1722.93	84	86	45-145	2	50
Tetryl	2000	1521.81	2000	1600.86	76	80	38-152	5	50
1,3,5-Trinitrobenzene	2010	1578.42	2010	1620.33	79	81	48-141	3	50
2,4,6-Trinitrotoluene	2010	1819.44	2010	1934.68	91	96	47-140	6	50
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 163585711002	Sample numbe	er(s): 87550	23-8755029						
Mercury	0.100	0.0962			96		80-120		
Batch number: 170035708002A	Sample numbe	er(s): 87550	23-8755029						
Antimony	0.600	0.613			102		80-120		
Arsenic	1.00	1.02			102		80-120		
Beryllium	0.400	0.426			106		80-120		
Cadmium	0.500	0.522			104		80-120		
Chromium	5.00	5.41			108		80-120		
Copper	5.00	5.53			111		80-120		
Lead	1.50	1.56			104		80-120		
Nickel	5.00	5.48			110		80-120		
Silver	5.00	5.34			107		80-120		
Thallium	0.200	0.226			113		80-120		
Zinc	50	53.21			106		80-120		
Batch number: 170035708002B	Sample numbe		23-8755029						
Selenium	1.00	1.07			107		80-120		
	%	%	%	8					
Batch number: 17026820001A	Sample numbe	er(s): 87550	23-8755029						
Moisture	89.5	89.42			100		99-101		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: EA Engineering, Science & Tech Reported: 01/26/2017 18:02 Group Number: 1746737

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/kg	MS Spike Added ug/kg	MS Conc ug/kg	MSD Spike Added ug/kg	MSD Conc ug/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 16357SLJ026	Sample numb	per(s): 875	5023-87550	029 UNSPK:	8755023					
Acenaphthene	0.66 U	32.89	33.33	33	35.12	101	106	72-118	5	30
Acenaphthylene	0.33 U	32.89	26.25	33	27.75	80	84	68-100	6	30
Anthracene	1.78	32.89	25.95	33	26.96	73	76	69-109	4	30
Benzo(a)anthracene	0.66 U	32.89	26.88	33	28.5	82	86	65-111	6	30
Benzo(a)pyrene	0.66 U	32.89	26.24	33	28.19	80	85	65-110	7	30
Benzo(b)fluoranthene	1.61	32.89	32.5	33	34.43	94	99	63-122	6	30
Benzo(g,h,i)perylene	0.66 U	32.89	13.55	33	14.25	41*	43*	58-109	5	30
Benzo(k)fluoranthene	0.66 U	32.89	28.93	33	32.51	88	99	60-110	12	30
Chrysene	1.00	32.89	26.71	33	28.23	78	83	62-108	6	30
Dibenz(a,h)anthracene	0.66 U	32.89	17.27	33	18.42	53*	56*	63-114	6	30
Fluoranthene	0.826	32.89	26.78	33	27.7	79	81	67-108	3	30
Fluorene	0.66 U	32.89	29.1	33	30.67	88	93	68-113	5	30
Indeno(1,2,3-cd)pyrene	0.66 U 0.66 U	32.89	16.53	33	17.5	50*	53*	58-111	6 1	30 30
1-Methylnaphthalene		32.89	28.42	33 33	28.69 32.9	86 87	87 96	80-106	11	30 30
2-Methylnaphthalene Naphthalene	1.08 1.88	32.89 32.89	29.56 26.88	33	28.52	87 76	96 81	74-110 64-106	6	30
Phenanthrene	0.66 U	32.89	26.88 26.98	33	28.52	82	81	64-106 70-106	6	30
Pyrene	0.66 U	32.89	20.90	33	26.22	82 74	86 79	64-105	7	30
Ругене	0.00 0	52.09	24.40	22	20.22	/4	19	64-105	/	30
	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg					
Batch number: 170040017A	Sample numb	per(s): 875	5023-87550	029 UNSPK:	8755023					
4-Amino-2,6-Dinitrotoluene	40 U	1970	1816.29	1970	1736.02	92	88	42-138	5	50
2-Amino-4,6-Dinitrotoluene	40 U	1960	1773.58	1960	1736.02	90	89	43-141	2	50
3,5-Dinitroaniline	40 U	1970	1798.74	1970	1784.77	91	91	47-141	1	50
1,3-Dinitrobenzene	39 U	1960	1886.99	1960	1844.78	96	94	54-140	2	50
2,4-Dinitrotoluene	39 U	1960	2093.79	1960	1979.1	107	101	52-137	6	50
2,6-Dinitrotoluene	110 U	1970	1816.29	1970	2037.53	92	103	51-138	11	50
HMX	210 U	1960	1627.4	1960	1761.23	83	90	29-148	8	50
Nitrobenzene	97 U	1970	1921.63	1970	1874.9	98	95	64-138	2	50
Nitroglycerin	780 U 73 U	21700	16098.65	21700	16280.5	74	75	45-137	1 7	50
2-Nitrotoluene 3-Nitrotoluene	73 U 110 U	1970 1970	2332.47 2173.54	1970 1970	2170.96 2087.02	118 110	110 106	57-135 57-135	4	50 50
4-Nitrotoluene	110 U	1970	21/3.54 2359.09	1960	2087.02	120	106	53-135	4	50
PETN	780 U	21800	14536.79	21800	14186.1	67	65	36-143	2	50
RDX	39 U	1970	1834.63	1970	1806.7	93	92	45-145	2	50
Tetryl	97 U	1960	1787.26	1960	1786.82	91	91	38-152	0	50
1,3,5-Trinitrobenzene	39 U	1970	2078.32	1970	2051.35	105	104	48-141	1	50
2,4,6-Trinitrotoluene	43 U	1970	1980.72	1970	1924.73	101	98	47-140	3	50
2,1,0 111101000140100						101	50	1, 110	5	50
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 163585711002	-	per(s): 875								
Mercury	0.110	0.167	0.279	0.167	0.281	101	102	80-120	1	20
Batch number: 170035708002A	Sample numb	per(s): 875	5023-87550	029 UNSPK:	8755029					
Antimony	0.262	1.09	0.848	1.17	0.959	54*	60*	75-125	12	20

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: EA Engineering, Science & Tech Reported: 01/26/2017 18:02 Group Number: 1746737

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Arsenic	8.42	1.82	10.95	1.94	11.01	139 (2)	134 (2)	75-125	1	20
Beryllium	0.870	0.727	1.58	0.777	1.59	97	93	75-125	1	20
Cadmium	1.82	0.909	2.89	0.971	2.80	118	101	75-125	3	20
Chromium	99.21	9.09	115.69	9.71	115.61	181 (2)	169 (2)	75-125	0	20
Copper	86.27	9.09	108.7	9.71	105.81	247 (2)	201 (2)	75-125	3	20
Lead	18.58	2.73	17.11	2.91	17.48	-54 (2)	-38 (2)	75-125	2	20
Nickel	19.38	9.09	32.05	9.71	31.65	139*	126*	75-125	1	20
Silver	0.108	9.09	9.55	9.71	9.52	104	97	75-125	0	20
Thallium	0.378	0.364	0.756	0.388	0.784	104	104	75-125	4	20
Zinc	66.21	45.45	158.23	48.54	158.16	202*	189*	75-125	0	20
Batch number: 170035708002B	Sample numb	er(s): 8755	5023-8755	029 UNSPK:	8755029					
Selenium	0.484	1.82	2.08	1.94	2.24	88	90	75-125	7	20

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/kg	mg/kg		
Batch number: 163585711002	Sample number(s):	8755023-8755029 BKG:	8755023	
Mercury	0.110	0.108	2 (1)	20
Batch number: 170035708002A	Sample number(s):	8755023-8755029 BKG:	8755029	
Antimony	0.262	0.337	25* (1)	20
Arsenic	8.42	9.27	10	20
Beryllium	0.870	0.890	2	20
Cadmium	1.82	1.77	3	20
Chromium	99.21	99.78	1	20
Copper	86.27	92.08	7	20
Lead	18.58	14.3	26*	20
Nickel	19.38	20.29	5	20
Silver	0.108	0.184	52* (1)	20
Thallium	0.378	0.370	2 (1)	20
Zinc	66.21	68.11	3	20
Batch number: 170035708002B	Sample number(s):	8755023-8755029 BKG:	8755029	
Selenium	0.484	0.493	2 (1)	20
	8	8		
Batch number: 17026820001A	Sample number(s):	8755023-8755029 BKG:	P796658	
Moisture	18.53	20.5	10*	5

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: EA Engineering, Science & Tech Reported: 01/26/2017 18:02 Group Number: 1746737

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: SIM SVOA (microwave) Batch number: 16357SLJ026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
8755023	84	86	78
8755024	87	87	63
8755025	64	64	55
8755026	76	81	71
8755027	81	88	75
8755028	81	89	74
8755029	81	88	73
Blank	93	101	85
LCS	92	97	80
MS	86	84	80
MSD	89	90	81
Limits:	50-125	50-120	52-110

Analysis Name: Nitroaromatics/Amines 8330B(s) Batch number: 170040017A 34.Dipitrotoluene

	3,4-Dinitrotoluene	
8755023	116	
8755024	115	
8755025	104	
8755026	109	
8755027	107	
8755028	98	
8755029	91	
Blank	108	
LCS	125	
LCSD	120	
MS	105	
MSD	121	
Limits:	62-133	

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

🔅 eurofins			,	1	<u>م</u> م	\sim				_			_			_	0	
Lancaster Laboratories Environmental			Acct. #	<u>)(</u>	NY	Grou	up # _	74	67	37	\$	Sample # _	87	55	02	3-2	9	
Client: EA Engineering, Science, E	Techn	vlag y	/		Matrix Analys				nalyses	Req	ueste	ed		For Lab U	lse Only			
Project Name/#: Tinian Mousald AD	Site ID #:										F	reserva	tion	Code	es		SF #:	
Project Manager: Bob Schambach	P.O. #:				۲ ۲	ind											SCR #:	
Sampler: M. Kelley, J. Duary	PWSID #:				Sediment	Ground Surface		6	SIN	91	ЭM	BS					Preserv	ation Codes
Phone #: (671) 646 - 5231	Quote #:				Sed			ner	700	1010	Ht/	B3301					H = HCI	T ≈ Thiosulfate
State where sample(s) were collected: Tiniar	7					ble ES		ontai	SW8270CSIN	Swcolog1	Coze/7471	B2 Ph					N = HNO3	B = NaOH
· · · · ·	Colle	ction		Composite	Ø	Potable NPDES	-	Total # of Containers	Su	s Su	9 5 1 E	Explosives 8330B	8				S = H₂SO₄	P = H₃PO₄
	Dete	Time	Grab	dmo	Soil	Water	Other:	otal #	PAH	METALS	NETALS	Explex					O = Other	
Sample Identification MAD - DVØ /	Date	Time 1105	U I	c S		×	0	F	d'	2	SL	A V					Kei	narks
NAD- DUØZ	12/11/14	(330		X	$\frac{\times}{\times}$			3		4	×	$\frac{7}{\sqrt{2}}$	-	+				
MAD DUØ3	12/11/14	1520		X	\sim			3	X	X	$\overline{\mathbf{X}}$	XX	<u>-</u>					
MAD- DUQ4	12/12/16			¥	\sim			3	X	X	$\overset{\sim}{\times}$	γX						
NAD- DU05	12/12/16	1415		X	X			Ĵ	X	'X	X	XX						
MAD- NUØG	12/12/16	and the strength of the second		×	X			3	$\overrightarrow{\gamma}$	\times	\times	\checkmark \checkmark						
MAD-DUQ7	12/12/14	1230		X	X			3	4	\prec	4	\times \times						
							1											
Turnaround Time Requested (TAT) (please check		dard 🖾	Rush		Reli	nquished				Da	1	Time 1/200		eived	by:		Date	Time
(Rush TAT is subject to laboratory approva		aiges.)			Réli	nguished		λ.	27	Da	5/16	Time		eived	by:		Date	Time
Date results are needed: Rush results requested by (please check): E-Ma	ail 🗌	Dho	ne 🗌				~,.								~J.			1
E-mail Address:		Pho			Reli	nquished	by:			Da	ate/	Time	Rec	eived	by:		Date	Time
Phone:							-											
			Reli	nquished	by:			Da	ate	Time	Rec	eived	by:		Date	Time		
Type I (Validation/non-CLP)													,					
					Relir	nquished	by:			Da	ate	Time	Rec	eived	by:		Date	Time
Type IV (CLP SOW)														S		12.20.40	1130	
Type VI (Raw Data Only)					Relir	nquished	by Co	omme	ercial (Carrie	er:		1					•
EDD Required? Yes 🗌 No 🔲 If yes	s, format: _				UPS		FedE	×`	≻_ (Other_			Tem	perat	ure up	on rece	oipt <u>206 - 504</u>	°C

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

🔅 eurofins

Lancaster Laboratories Environmental

Sample Administration **Receipt Documentation Log**

Client: EA Eng.

Doc Log ID: 171275

Group Number(s): 1746737

÷

Delivery Method: Fee	<u>d Ex</u>	Arrival Timestamp:	<u>12/20/2016_11:</u>	<u>30</u>
Number of Packages: <u>3</u>		Number of Projects:	1	
	Arrival Cond	ition Summary		
Shipping Container Sealed:	Yes	Sample IDs on COC ma	atch Containers:	Yes
Custody Seal Present:	Yes	Sample Date/Times ma	tch COC:	Yes
Custody Seal Intact:	Yes	VOA Vial Headspace ≥	6mm:	N/A
Samples Chilled:	Yes	Total Trip Blank Qty:	0	
Paperwork Enclosed:	Yes	Air Quality Samples Pre	sent:	No
Samples Intact:	Yes			
Missing Samples:	No			
Extra Samples:	No)
Discrepancy in Container Qty on	COC: No			
Unpacked by Timothy Cubberley	(6520) at 12:51 on 1	2/20/2016		
1	Samples (Chilled Details	ŧ	
Thermometer Types: DT = Dig	gital (Temp. Bottle)	IR = Infrared (Surface T	emp) All Temp	eratures in °C.

							,
Cooler #	Thermometer ID	Corrected Temp	<u>Therm. Type</u>	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT131	4.6	DT	Wet	Y	Bagged	Ν
2	DT131	2.6	DT	Wet	Y	Bagged	Ν
3	DT131	5.4	DT	Wet	Y	Bagged	N

)

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL C Cfu CP Units F g IU kg L L	Below Minimum Quantitation Level degrees Celsius colony forming units cobalt-chloroplatinate units degrees Fahrenheit gram(s) International Units kilogram(s) liter(s) pound(s)	mg mL MPN N.D. ng NTU pg/L RL TNTC µg	milligram(s) milliliter(s) Most Probable Number none detected nanogram(s) nephelometric turbidity units picogram/liter Reporting Limit Too Numerous To Count microgram(s)			
m3	cubic meter(s)	μL	microliter(s)			
meq	milliequivalents	umhos/cm	micromhos/cm			
<	less than					
>	greater than					
ppm	parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.					
ppb	parts per billion					
Drv weight	Results printed under this heading have b	een adjusted for mo	pisture content. This increases the analyte weight			

Dry weight
basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight
concentration to approximate the value present in a similar sample without moisture. All other results are reported on an
as-received basis.

Laboratory Data Qualifiers:

- C Result confirmed by reanalysis
- E Concentration exceeds the calibration range
- J (or G, I, X) estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX F

DATA VALIDATION

This page intentionally left blank

DATA VALIDATION REPORT

PROJECT NO:	6301901
PROJECT NAME:	Phase II Environmental Site Assessment, Masalog Ammunition Depot,
	Pina, Tinian
LABORATORY:	Eurofins Lancaster Laboratories Environmental, Lancaster, Pennsylvania,
	and RTI Laboratories, Inc., Livonia, Michigan
REVIEWER:	Brenda Nuding, Project Chemist
	EA Engineering, Science, and Technology, Inc., PBC (EA)
DATE:	27 February 2017

This data validation report details the findings associated with Sample Delivery Group (SDG) TIN01 including information concerning the field samples, matrix, and sampling date. Major deficiencies or quality assurance/quality control (QA/QC) issues and their impact on the associated sample data are discussed. Necessary data qualifications are addressed and the final data validation decisions as to the acceptance, rejection, or qualification of the results are presented.

Date(s) Collected	11 and 12 December 2016			
Sample Delivery Group No.	TI	N01		
PARAMETERS	Soil Sample(s)	Field Replicate(s)		
Polycyclic aromatic hydrocarbons by USEPA SW-846 Method (SW)8270C SIM	5	2		
Metals by SW6020/7471A	5	2		
Explosives by SW8330B	5	2		
White phosphorus by SW7580	5	2		

SIM = selected ion monitoring

USEPA = U.S. Environmental Protection Agency

The analytical data presented in SDG TIN01 were reviewed with respect to QA/QC parameters as specified in the Sampling and Analysis Plan (EA, 2016). In addition, the following guidance documents were used while assessing the validity of these data: U.S. Environmental Protection Agency (EPA) Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, September 2016a; the EPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, September 2016b; as well as the referenced methodology.

As applicable to referenced methodology, QA/QC parameters reviewed include:

- Chain of custody/Sample receipt
- Holding times
- Instrument performance checks
- Initial and continuing calibrations
- Method and calibration blanks
- Interference check samples
- Serial dilutions

- Laboratory control samples
- Surrogate recovery
- Matrix spikes/matrix spike duplicates/laboratory replicates
- Field QC samples
- Internal standards
- Compound quantitation
- Data qualifiers

Chain of Custody/Sample Receipt:

The sample coolers and the samples contained within were received intact at the laboratory between 2.6 and 5.4 degrees Celsius (°C), within the recommended preservation temperature of $\leq 6^{\circ}$ C. No qualification of sample data was necessary on the basis of sample condition at receipt or chain of custody.

Holding Times:

Samples were prepared and analyzed within the holding times as specified in the referenced method of analysis with the exception of the analyses of explosives by SW8330B and white phosphorus by SW7850. Results for these analyses have been flagged as estimated with "J" qualifiers if detectable and "UJ" if nondetectable.

Instrument Performance Checks:

Instrument performance checks are performed to ensure mass resolution, identification, and sensitivity for gas chromatography/mass spectroscopy (GC/MS) SIM. The instrument performance check criteria that were associated with samples from this SDG were within method-established control limits.

Initial and Continuing Calibrations:

Initial and continuing calibrations were performed at the required frequencies. Results for target analytes were within method-established QC limits.

Method and Calibration Blanks:

Method and calibration blanks were prepared and analyzed as recommended by the referenced method. Target analytes were not detected in the blanks, or the sample concentration was greater than five times the concentration detected in the associated blank.

Interference Check Samples:

The inductively coupled plasma/mass spectrometry (ICP/MS) interference check samples (ICS) verify the interelement and background correction factors. ICS sample percent recoveries (%Rs) were within method-specified QC limits.

Serial Dilutions:

The ICP serial dilution determines whether significant physical or chemical interferences exist due to sample matrix. The established criteria were met (percent difference less than 10 percent if the original concentration was greater than 100 times the detection limit [DL]) for serial dilutions prepared with project samples with one exception. The percent difference of the copper result exceeded QC limits for the serial dilution prepared with MAD-DU07. The copper result for this sample has been flagged as estimated with the "J" qualifier.

SAMPLE DELIVERY GROUP	TIN01
-----------------------	-------

Laboratory Control Samples:

Laboratory control samples (LCSs) were prepared and analyzed as recommended by the referenced method. The %Rs and relative percent differences (RPDs) were within the project-specified QC limits.

Surrogate Recovery:

Surrogates were added to environmental and QC samples and standards for analysis of organic compounds as required by the referenced methodology. Surrogate %Rs were within the project-specified QC limits.

Matrix Spikes/Matrix Spike Duplicates/Laboratory Replicates:

The results for matrix spike (MS) and MS duplicate (MSD) samples and laboratory replicates were reviewed. The %Rs and RPDs for these QC samples prepared with project samples were within the project- and laboratory-specified QC limits, with the following exceptions.

- %Rs for the MS and MSD prepared with MAD-DU01 were below QC limits for the following PAHs: benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. These results were nondetectable in the associated project sample and have been flagged as estimated with the "UJ" qualifier.
- %Rs for the MS and MSD prepared with MAD-DU07 were outside QC limits for antimony (low %R), nickel (high %R), and zinc (high %R). These results in the associated project sample have been flagged as estimated with the "J" qualifier.
- The RPD for results for project sample MAD-DU07 and its laboratory replicate were outside QC limits for lead. The lead result in the associated project sample has already been flagged with the "J" qualifier due to MS and MSD results.

Field QC Samples:

Field replicates were collected and identified as MAD-DU06 and MAD-DU07, and the associated original sample was MAD-DU05. The relative standard deviations (RSDs) for the results of the field replicates and associated original sample were within QC limits with one exception. The RSD for the samples analyzed for acenaphthylene is outside QC limits, and the acenaphthylene results for MAD-DU05, MAD-DU06, and MAD-DU07 have been flagged as estimated with the "J" qualifier.

Internal Standards:

Internal standards were added to environmental and QC samples and standards to monitor sensitivity and response during every analytical run. Internal standard area counts and retention times for project samples were within the project-specified QC limits with one exception.

The retention time for internal standard perylene-d12 by USEPA Method SW8270C SIM was below QC limits for MAD-DU07. The laboratory performed corrective action and re-analyzed the sample, and the internal standard result was still below QC limits, indicating a potential matrix interference. The retention time for the other five internal standards were within QC limits; therefore, no further qualification has been performed on the basis of this single outlier.

Compound Quantitation:

The reported quantitation results and reported DLs were reviewed and found to be accurate and to generally meet project requirements. Analytical results reported between the limit of

SAMPLE DELIVERY GROUP	TIN01
-----------------------	-------

quantitation and the DL have been flagged as estimated values with the "J" qualifier. No bias is inferred.

Data Qualifiers:

Appropriate data flags were used and defined in the analytical report. During data validation, additional qualifiers have been applied to data. These are defined below:

"J" indicates that the analyte was positively identified, but the quantitation is estimated.

"UJ" indicates that the analyte was not detected; however, the quantitation limit is estimated due to discrepancies in the associated quality control criteria.

The allowable final data qualifiers for definitive data and the hierarchy of data qualifiers listed in order of the most severe through the least severe are J, U, and UJ. For data with multiple qualifiers, the hierarchy listed above has been implemented for applying the final qualifier.

Summary:

The analytical data contained in this report have been reviewed for completeness, accuracy, and precision. The data as qualified meet the quality objectives for the intended use.